Perception and First Defense Responses Against Pseudomonas syringae pv. phaseolicola in Phaseolus vulgaris: Identification of Wall-Associated Kinase Receptors

Author:

De la Rubia Alfonso Gonzalo1,Centeno María Luz1,Moreno-González Victor2,De Castro María3,García-Angulo Penélope1ORCID

Affiliation:

1. Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, E-24071, León, Spain

2. Área de Zoología, Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, E-24071, León, Spain

3. Departamento de Biotecnología Vegetal, Laboratorios Analíticos Agrovet, Mansilla Mayor, 24217, León, España

Abstract

Common bean (Phaseolus vulgaris) is attacked by several pathogens such as the biotrophic gamma-proteobacterium Pseudomonas syringae pv. phaseolicola. To study the P. syringae pv. phaseolicola–bean interaction during the first stages of infection, leaf discs of a susceptible bean cultivar Riñón were infected with pathogenic P. syringae pv. phaseolicola. Using this experimental system, we tested six new putative wall-associated kinase (WAK) receptors, previously identified in silico. These six P. vulgaris WAKs (PvWAKs) showed high protein sequence homology to the well-described Arabidopsis thaliana WAK1 (AtWAK1) receptor and, by phylogenetic analysis, clustered together with AtWAKs. The expression of PvWAK1 increased at very early stages after the P. syringae pv. phaseolicola infection. Time course experiments were performed to evaluate the accumulation of apoplastic H2O2, Ca2+ influx, total H2O2, antioxidant enzymatic activities, lipid peroxidation, and the concentrations of abscisic acid and salicylic acid (SA), as well as the expression of six defense-related genes: MEKK-1, MAPKK, WRKY33, RIN4, PR1, and NPR1. The results showed that overexpression of PR1 occurred 2 h after P. syringae pv. phaseolicola infection without a concomitant increase in SA levels. Although apoplastic H2O2 increased after infection, the oxidative burst was neither intense nor rapid, and an efficient antioxidant response did not occur, suggesting that the observed cellular damage was caused by the initial increase in total H2O2 early after infection. In conclusion, Riñón can perceive the presence of P. syringae pv. phaseolicola, but this recognition results in only a modest and slow activation of host defenses, leading to high susceptibility to P. syringae pv. phaseolicola.

Funder

Spanish Ministry of Economy, Industry and Competitiveness

Spanish Education Ministry

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3