Combining QTL Mapping with Genome Resequencing Identifies an Indel in an R Gene that is Associated with Variation in Leaf Rust Disease Resistance in Poplar

Author:

Nvsvrot Tashbek12,Xia Wenxiu13,Xiao Zheng’ang1,Zhan Chang1,Liu Meifeng1,Yang Xiaoqing1,Zhang Yan1,Wang Nian12ORCID

Affiliation:

1. College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China

2. Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China

3. Logistics Service Group, Wuhan University, Wuhan, 430070, China

Abstract

Poplar trees (Populus spp.) are important and are widely grown worldwide. However, the extensive occurrence of leaf rust disease caused by Melampsora spp. seriously inhibits their growth and reduces their biomass. In our previous study, a high-quality genetic map was constructed for the poplar F1 population I-69 × XYY by using next-generation sequencing-based genotyping-by-sequencing. Here, we collected phenotypic data on leaf rust disease resistance on three different dates for all 300 progenies of the F1 population. Combining a high-quality genetic map and phenotypic data, we were able to detect 11 major quantitative trait loci (QTLs) for leaf rust disease resistance. Among these 11 QTLs, two pairs were detected on at least two dates. In the corresponding genomic sequence, we found that resistance (R) gene clusters were located in these two QTL regions. By using genome resequencing, PCR confirmation and statistical analysis, a 611-bp deletion within an R gene in one QTL region was found to be associated with variation in leaf rust disease resistance. A PCR-based examination of this 611-bp deletion was performed. This 611-bp deletion was also found to affect mRNA splicing and form a new protein with the loss of some key protein domains. Based on this study, we were able to determine the genetic architecture of variation in poplar leaf rust disease resistance, and the 611-bp deletion in the R gene could be used as a diagnostic marker for future poplar molecular breeding.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3