Efficiency of Adaptive Cluster Sampling for Estimating Plant Disease Incidence

Author:

Ojiambo P. S.,Scherm H.

Abstract

Conventional sampling designs such as simple random sampling (SRS) tend to be inefficient when assessing rare and highly clustered populations because most of the time is spent evaluating empty quadrats, leading to high error variances and high cost. In previous studies with rare plant and animal populations, adaptive cluster sampling, where sampling occurs preferentially in the neighborhood of quadrats in which the species of interest is detected during the sampling bout, has been shown to estimate population parameters with greater precision at an effort comparable to SRS. Here, we use computer simulations to evaluate the efficiency of adaptive cluster sampling for estimating low levels of disease incidence (0.1, 0.5, 1.0, and 5.0%) at various levels of aggregation of infected plants having variance-to-mean ratios (V/M) of ≈1, 3, 5, and 10. For each simulation, an initial sample size of 50, 100, and 150 quadrats was evaluated, and the condition to adapt neighborhood sampling (CA), i.e., the minimum number of infected plants per quadrat that triggers a switch from random sampling to sampling in neighboring quadrats, was varied from 1 to 4 (corresponding to 7.7 to 30.8% incidence of infected plants per quadrat). The simulations showed that cluster sampling was consistently more precise than SRS at a field-level disease incidence of 0.1 and 0.5%, especially when diseased plants were highly aggregated (V/M = 5 or 10) and when the most liberal condition to adapt (CA = 1) was used. One drawback of adaptive cluster sampling is that the final sample size is unknown at the beginning of the sampling bout because it depends on how often neighborhood sampling is triggered. In our simulations, the final sample size was close to the initial sample size for disease incidence up to 1.0%, especially when a more conservative condition to adapt (CA > 1) was used. For these conditions, the effect of disease aggregation was minor. In summary, both precision and the sample size required with adaptive cluster sampling responded similarly to disease incidence and aggregation, i.e., both were most favorable at the lowest disease incidence with the highest levels of clustering. However, whereas relative precision was optimized with the most liberal condition to adapt, the ratio of final to initial sample size was best for more conservative CA values, indicating a tradeoff. In our simulations, precision and final sample size were both simultaneously favorable for disease incidence of up to 1.0%, but only when infected plants were most aggregated (V/M = 10).

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3