Pathogenesis of Plasmopara viticola Depending on Resistance Mediated by Rpv3_1, and Rpv10 and Rpv3_3, and by the Vitality of Leaf Tissue

Author:

Marie Juraschek Lena1,Matera Christiane1,Steiner Ulrike1,Oerke Erich-Christian1ORCID

Affiliation:

1. Institute of Crop Science and Resource Conservation-Plant Pathology, Rheinische Friedrich-Wilhelms-Universitaet Bonn, 53115 Bonn, Germany

Abstract

Grapevine cultivars vary in their resistance to Plasmopara viticola, causal agent of downy mildew. Genes from various Vitis species confer pathogen resistance (Rpv), resulting in reduced compatibility of the host–pathogen interaction and partial disease resistance that may become apparent at different stages of pathogenesis. This study describes the pathogenesis of P. viticola on the partially resistant cultivars Regent (Rpv3-1) and Solaris (Rpv3-3, Rpv10) as compared with the susceptible cultivar Mueller-Thurgau using various microscopic techniques, visual disease rating as well as qPCR. Host plant resistance had no effect on the initial steps of pathogenesis outside the host plant cells (zoospore attachment, formation of substomatal vesicle) and became detectable only after the formation of primary haustoria. The restricted compatibility resulted in reductions in haustorium size and in the number of secondary haustoria and was associated with callose depositions around haustoria and stomatal guard cells, collapsed mesophyll cells (hypersensitive reaction), and additional production of an amorphous substance in the intercellular space of cultivar Solaris. Resistance mechanisms reduced the efficiency of P. viticola haustoria and largely restricted tissue colonization to the spongy parenchyma; resistance of cultivar Solaris having thicker leaves was more effective than that of cultivar Regent. Despite of the effects of resistance genes, P. viticola was able to complete its life cycle by forming sporangiophores with sporangia through the stomata on both resistant cultivars indicating partial resistance. Differences in the pathogenesis on detached and attached grapevine leaves highlighted the impact of host tissue vitality on both resistance and susceptibility to the biotrophic pathogen.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3