Efficacy of Brassicaceous Seed Meal Formulations for the Control of Apple Replant Disease in Conventional and Organic Production Systems

Author:

Mazzola Mark1,Brown Jack2

Affiliation:

1. USDA Agricultural Research Service, Tree Fruit Research Laboratory, 1104 N. Western Avenue, Wenatchee, WA 98801

2. Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow 83844-2339

Abstract

The efficacy of brassicaceous seed meals for the control of apple replant disease and the effects of such treatments on the causal pathogen complex were examined in conventional and organic production systems. When used in conjunction with a postplant application of mefenoxam, Brassica juncea and Sinapis alba seed meal soil amendments were as effective as preplant fumigation of soil with 1,3-dichloropropene-chloropicrin in terms of disease control, tree growth, and overall fruit yields of Gala/M26. Brassica napus seed meal amendment–mefenoxam soil drench also enhanced yields in a manner comparable to preplant fumigation, but vegetative growth was intermediate between the control and fumigation treatments. When applied alone, seed meal amendments failed to enhance tree growth or control disease to the level attained in response to soil fumigation. Postplant mefenoxam treatments revealed that failure of seed meal amendments to enhance tree growth and yield when used independently was due, at least in part, to increased apple root infection by Pythium spp. in B. napus and S. alba seed meal–amended soils, and by Phytophthora cambivora in B. juncea–amended soil. As mefenoxam treatment is not compatible with organic cropping systems, a seed meal blend was formulated which, based upon biological activity, was predicted to suppress known components of the target pathogen complex without need of additional treatment. Gala/M26 trees planted in soils treated with a 1:1 ratio of B. juncea:B. napus seed meal blend performed as well in terms of disease control and vegetative growth as trees cultivated in fumigated soil at an organic-certified orchard. Because these trials utilized the highly susceptible rootstock M26, the results demonstrate that these amendments are a viable alternative to soil fumigation for the control of apple replant disease in both conventional and organic systems.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3