Identification of New QTL Contributing to Barley Yellow Dwarf Virus-PAV (BYDV-PAV) Resistance in Wheat

Author:

Choudhury S.1,Hu H.1,Fan Y.1,Larkin P.2,Hayden M.3,Forrest K.3,Birchall C.4,Meinke H.1,Xu R.5,Zhu J.15,Zhou M.1ORCID

Affiliation:

1. Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS 7250, Australia

2. CSIRO Agriculture and Food, Canberra, ACT 2601, Australia

3. Agriculture Victoria Research, AgriBio, Bundoora, Victoria 3083 Australia

4. School of Environmental and Rural Science, University of New England, Armidale NSW 2351, Australia

5. Barley Research Institution of Yangzhou University, Yangzhou University, Yangzhou, 225009, China

Abstract

Barley yellow dwarf (BYD) is a major virus disease which dramatically reduces wheat yield. Introducing BYD resistance genes into commercial varieties has been proven to be effective in reducing damage caused by barley yellow dwarf virus (BYDV). However, only one major resistance gene is readily deployable for breeding; Bdv2 derived from Thinopyrum intermedium is deployed as a chromosomal translocation. In this study, a double haploid (DH) population was developed from a cross between XuBYDV (introduced from China showing very good resistance to BYD) and H-120 (a BYD-sensitive Chinese accession), and was used to identify QTL for BYD resistance. The population was genotyped using an Infinium iSelect bead chip array targeting 90K gene-based SNPs. The disease resistance of DH lines inoculated with BYDV was assessed at the heading stage. The infections were assessed by tissue blot immunoassay (TBIA). Three new QTL were identified on chromosomes 5A, 6A, and 7A for both symptom and TBIA, with all three resistance alleles being inherited from XuBYDV. Some DH lines with the resistance alleles from all three QTL showed high level resistance to BYD. These new QTL will be useful in breeding programs for pyramiding BYD resistance genes.

Funder

Grains Research and Development Corporation (GRDC) of Australia

National Key R&D Program of China

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3