Rapid Decline of Calonectria pseudonaviculata Soil Population in Selected Gardens Across the United States

Author:

Hong Chuanxue1ORCID,Daughtrey Margery2,Howle Matthew3,Schirmer Scott4,Kosta Kathleen5,Kong Ping1ORCID,Likins Michael6,Suslow Karen7

Affiliation:

1. Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA 23455

2. Long Island Horticultural Research and Extension Center, Cornell University, Riverhead, NY 11901

3. Department of Plant Industry, Clemson University, Florence, SC 29506

4. Bureau of Environmental Programs, Illinois Department of Agriculture, DeKalb, IL 60115

5. California Department of Food and Agriculture, Sacramento, CA 95814

6. Chesterfield Cooperative Extension, Chesterfield Co., VA 23832

7. National Ornamental Research Site at Dominican University of California, San Rafael, CA 94901

Abstract

Calonectria pseudonaviculata (Cps) poses a serious threat to boxwood, an iconic landscape plant in American and European gardens. Under the mild climatic conditions of the United Kingdom, Cps remained recoverable in infected leaf debris after being left on the soil surface or buried for 5 years. The primary objective of this study was to determine how this fungus may be affected by the warmer summers and colder winters in the United States by sampling and baiting soil with boxwood cuttings and by on-site testing with sentinel plants. Soil sampling started in a Virginia garden in January 2016 and was extended to California, Illinois, New York, and South Carolina in early summer of 2017 through late fall of 2018. The Cps soil population as measured by the percentage of infected bait leaves declined sharply within the first year of blighted boxwood removal and fell to an almost undetectable level at the end of this study. To validate these baiting results, the Virginia garden was tested on site four times with container-grown boxwood plants while the South Carolina garden and three New York gardens were tested once. Each test began with sentinel plants set out for field exposure, followed by evaluation on site and then in the laboratory after plants were retrieved from these gardens and incubated under conducive environments for 2 weeks. Cps was not observed on any sentinel boxwood plant on site or in the laboratory with one exception. These observations indicate that Cps did not survive in the United States garden soil over time as well as it did in the United Kingdom. These results have important practical implications while challenging the notion that fungi producing microsclerotia will always survive in the soil for many years.

Funder

United States Department of Agriculture – Animal and Plant Inspection Service

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3