Mapping the A Genome for QTL Conditioning Resistance to Fusarium Head Blight in a Wheat Population with Triticum timopheevii Background

Author:

Malihipour Ali1,Gilbert Jeannie2,Fedak George3,Brûlé-Babel Anita4,Cao Wenguang5

Affiliation:

1. Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada, and Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, MB R3T 2M9, Canada

2. Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg

3. Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada

4. Department of Plant Science, University of Manitoba, Winnipeg

5. Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa

Abstract

Development and use of resistant wheat cultivars is the most practical and economical approach for the control of Fusarium head blight (FHB). In the present study, a population of recombinant inbred lines derived from the cross between ‘AC Brio’ (a Canadian bread wheat cultivar moderately susceptible to FHB) and ‘TC 67’ (an FHB-resistant cultivar derived from Triticum timopheevii) was used to map quantitative trait loci (QTL) for FHB resistance using microsatellite molecular markers. Multiple interval mapping detected several QTL for FHB resistance on the chromosomes 5AL and 6A. The QTL detected in the marker interval of cfd6.1-barc48 on chromosome 5AL explained 10.9, 5.2, and 7.8% of phenotypic variation for disease incidence (type I resistance), disease severity (a combination of type I and type II resistance), and Fusarium-damaged kernels (FDK) (type IV resistance) under field conditions, respectively. The second QTL mapped to 5AL, in the marker interval of cfd39-cfa2185, explained 19.4 and 20.6% of phenotypic variation for FDK under field conditions and disease severity in the greenhouse (type II resistance), respectively. The QTL located on chromosome 6A conferred resistance to disease incidence and severity under field conditions and to disease severity in the greenhouse, explaining 6.8 to 11.8% of phenotypic variation for these traits. Several QTL for agronomic traits were also mapped in this study, including one and two QTL to the chromosomes 2A and 5AL, respectively, all for plant height, and two QTL to chromosome 6A for plant height and flowering date, respectively. The 5AL QTL for FHB resistance mapped in the marker interval of cfd39-cfa2185 in the present study is a novel QTL that originated from T. timopheevii and is reported here for the first time. Further validation of this QTL is required for wheat breeding programs to enhance resistance levels to FHB.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3