Evaluation of Six Models to Estimate Ascospore Maturation in Venturia pyrina

Author:

Eikemo H.1,Gadoury D. M.2,Spotts R. A.3,Villalta O.4,Creemers P.5,Seem R. C.6,Stensvand A.7

Affiliation:

1. Norwegian Institute for Agricultural and Environmental Research, Plant Health and Plant Protection Division, 1432 Ås, Norway

2. Department of Plant Pathology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456

3. Oregon State University Mid-Columbia Agricultural Research and Extension Center, Hood River 97031

4. Biosciences Research Division, Department of Primary Industries, Knoxfield, Victoria, Australia

5. Proefcentrum Fruitteelt–Applied Scientific Research, Department of Mycology, B-3800 Sint-Truiden, Belgium

6. Department of Plant Pathology, Cornell University

7. Norwegian Institute for Agricultural and Environmental Research, Plant Health and Plant Protection Division

Abstract

Estimates of ascospore maturity generated by models developed for Venturia pyrina in Victoria, Australia (NV and SV), Oregon, United States (OR), and Italy (IT) or for V. inaequalis in New Hampshire, United States (NH-1) or modified in Norway (NH-2) were compared with observed field ascospore release of V. pyrina from 21 site–year combinations. The models were also compared with ascospore release data from laboratory assays. In the laboratory assays, the forecasts of the NH-1 and NH-2 models provided the best fit to observed spore release. Under field conditions, the lag phases and slope coefficients of all models differed from those of observed release of ascospores. Identifying the precise time of bud break of pear to initiate degree-day accumulation was problematic at both Australian sites. This resulted in a higher deviance between bud break and first released ascospore compared with the sites in Norway and Belgium. Linear regressions of observed release against forecasted maturity generated similarly high concordance correlation coefficients. However, where differences were noted, they most often favored models that included adjustment for dry periods. The NH-2, IT, and NV models using pooled data also provided the most accurate estimates of 95% ascospore depletion, a key event in many disease management programs.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3