Effects of Temperature and Duration of Preconditioning Cold Treatment on Sclerotial Germination of Claviceps purpurea

Author:

Uppala Sai Sree1,Wu B. M.2,Alderman S. C.3

Affiliation:

1. Central Oregon Agricultural Research Center, Madras, OR 97741

2. Department of Plant Pathology, China Agricultural University, Beijing

3. United States Department of Agriculture–Agricultural Research Service National Forage Seed Production Research Center, Corvallis, OR, 97331

Abstract

Claviceps purpurea is an important ovary-infecting pathogen that replaces seed with sclerotia in Kentucky bluegrass grown for seed. Sclerotia overwinter in the soil and germinate in the spring to produce ascospores that infect grass seed ovaries. To better understand environmental conditions affecting ascospore production, the effects of preconditioning cold treatment and subsequent incubation temperature on germination of sclerotia were determined in growth chambers under controlled conditions. Preconditioning cold treatment was essential for germination only in treatments where the incubation temperature was high (at least higher than 20°C). At lower incubation temperatures (10 to 20°C), preconditioning also played a role in improving sclerotial germination. Preconditioning at 4°C (in darkness) for 4 to 8 weeks followed by incubation at 10 and 20°C (cycle of 12 h each of darkness and light), or constant 15°C (cycle of 12 h each of darkness and light), was optimal for ergot germination. When sclerotia were preconditioned for 4 weeks or longer, number of incubation days required for initiation of germination was not affected by temperature in the range from 10 to 25°C (cycle of 12 h each of darkness and light), although the duration of germination (or the progress speed of germination) was still affected by temperature. A simple model was developed based on laboratory results and validated with historic spore trap data collected from various Kentucky bluegrass fields in Oregon (Willamette Valley, central Oregon, and Grande Ronde Valley). The prediction model could predict ascospore onset well and explained 55% of variation in the data.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3