First report of the plum marbling disease associated agent, plum viroid I, in apricots (Prunus armeniaca) in South Africa

Author:

Bester Rachelle1,Maree Hans Jacob23

Affiliation:

1. Stellenbosch University, 26697, Genetics, Room 246, JC Smuts Building, Van der Bijl Street, Stellenbosch, 7600, Matieland, Western Cape, South Africa, 7602;

2. Citrus Research International Pty Ltd, 206805, PO Box 2201, Matieland, South Africa, 7602

3. Stellenbosch University, 26697, Private Bag X1, Matieland, South Africa, 7602;

Abstract

Plum viroid I (PlVd-I) was recently identified as a new viroid in 2020 present in Japanese plum (Prunus salicina) displaying marbling and corky flesh symptoms (Bester et al. 2020). This viroid is a member of the species Apscaviroid plvd-I (genus Apscaviroid, family Pospiviroidae) (Walker et al. 2022). The first observation of apricot fruits with an uneven, indented surface and irregular shape was in 2003 on Prunus armeniaca cv. Charisma in the Western Cape, South Africa. The symptomatic apricot cv ‘Charisma’ scions showed symptoms only on the fruits, resembling the marbling disease deformities reported previously on fruits from PlVd-I-infected plum trees (Supplementary material 1). In the summer of 2019, representative leaf samples were collected from 13 ‘Charisma’ apricot trees (seven symptomatic and six healthy trees) from two different apricot orchards on two geographical separate farms in the Western Cape. Total RNA was extracted from 1 g leaf petioles using a modified CTAB extraction protocol (Ruiz-García et al. 2019). Ribo-depleted RNA (RiboMinus™ Plant Kit for RNA-Seq, ThermoFisher Scientific) was prepared, and a sequencing library (Ion Total RNA-Seq Kit v2.0, ThermoFisher Scientific) was constructed from a symptomatic sample (La4) (Central Analytical Facility, Stellenbosch University, CAF-SU). High-throughput sequencing was performed on an Ion Torrent™ Proton™ instrument (CAF-SU). De novo assembly using SPAdes 3.13.0 (default parameters) (Nurk et al. 2013) were performed using 93,760,198 reads (average read length: 143 nt). The 174679 scaffolds obtained were annotated using BLAST+ standalone against a local NCBI nucleotide database. One scaffold (443 nt, read coverage: 23.88) had the highest sequence identity (99.59%) to multiple PlVd-I isolates and two scaffolds of 1440 nucleotides (nt) and 2143 nt had high sequence identity to RNA1 and RNA2 of solanum nigrum ilarvirus 1 (SnIV1) (MN216370: 98%; MN216373: 98%) (Ma et al. 2020). These were the only viral sequences identified in the sample. Consensus sequences for SnIV1 were generated by read mapping using CLC Genomics Workbench 11.0.1 (Qiagen) (default parameters) to SnIV1 (MN216370; MN216373; MN216376) and deposited in GenBank (MT900926-MT900928). To confirm the presence of both PlVd-I and the apricot variant of SnIV1, reverse transcription polymerase chain reactions (RT-PCRs) were performed on the RNA of the 13 samples collected. The samples were tested for PlVd-I using primer set 22F/21R (Bester et al. 2020). Only the symptomatic samples tested positive for PlVd-I providing the first evidence of PlVd-I related symptoms in apricots. Three PlVd-I amplicons were bidirectionally Sanger sequenced (CAF-SU) and submitted to GenBank (MT385845-MT385847). The HTS PlVd-I sequence from sample La4 was 100% identical to MT385845, and 99.37% identical to MT385846 and MT385847. An RT-PCR assay was designed, targeting SnIV1 RNA2 (Ilar_RNA2_402F: CTATCTGCCCGAAGGTCAAC, Ilar_RNA2_1161R: CCTATCAAGAGCGAGCAATGG). All samples tested positive for SnIV1 irrespective of symptom status and therefor SnIV1 appears not be associated with specific symptoms in ‘Charisma’ apricots. This study is the first to report the presence of PlVd-I in symptomatic apricots presenting with uneven, indented surface morphology in South Africa. This study adds towards the investigation into possible alternative hosts for PlVd-I and will assist the South African certification scheme to assess the incidence and severity in apricots.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3