Transgenic Virus Resistance in Crop-Wild Cucurbita pepo Does Not Prevent Vertical Transmission of Zucchini yellow mosaic virus

Author:

Simmons H. E.1,Prendeville H. R.2,Dunham J. P.3,Ferrari M. J.4,Earnest J. D.4,Pilson D.5,Munkvold G. P.6,Holmes E. C.7,Stephenson A. G.4

Affiliation:

1. Seed Science Center, Iowa State University, Ames, IA 50011; and Department of Biology, The Pennsylvania State University, University Park, PA 16802

2. School of Biological Sciences, University of Nebraska, Lincoln, NE 68588; and Department of Biology, University of Virginia, Charlottesville, VA 22904

3. Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90033

4. Department of Biology, The Pennsylvania State University, University Park, PA 16802

5. School of Biological Sciences, University of Nebraska, Lincoln, NE 68588

6. Seed Science Center, Iowa State University, Ames, IA 50011

7. Department of Biology, The Pennsylvania State University, University Park, PA 16802; and Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Medical School, The University of Sydney, NSW 2006, Australia

Abstract

Zucchini yellow mosaic virus (ZYMV) is an economically important pathogen of cucurbits that is transmitted both horizontally and vertically. Although ZYMV is seed-transmitted in Cucurbita pepo, the potential for seed transmission in virus-resistant transgenic cultivars is not known. We crossed and backcrossed a transgenic squash cultivar with wild C. pepo, and determined whether seed-to-seedling transmission of ZYMV was possible in seeds harvested from transgenic backcrossed C. pepo. We then compared these transmission rates to those of non-transgenic (backcrossed and wild) C. pepo. The overall seed-to-seedling transmission rate in ZYMV was similar to those found in previous studies (1.37%), with no significant difference between transgenic backcrossed (2.48%) and non-transgenic (1.03%) backcrossed and wild squash. Fewer transgenic backcrossed plants had symptom development (7%) in comparison with all non-transgenic plants (26%) and may be instrumental in preventing yield reduction due to ZYMV. Our study shows that ZYMV is seed transmitted in transgenic backcrossed squash, which may affect the spread of ZYMV via the movement of ZYMV-infected seeds. Deep genome sequencing of the seed-transmitted viral populations revealed that 23% of the variants found in this study were present in other vertically transmitted ZYMV populations, suggesting that these variants may be necessary for seed transmission or are distributed geographically via seeds.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3