UV-Transmitting Plastics Reduce Powdery Mildew in Strawberry Tunnel Production

Author:

Onofre Rodrigo B.1ORCID,Gadoury David M.2,Stensvand Arne34,Bierman Andrew5,Rea Mark6,Peres Natalia A.1ORCID

Affiliation:

1. University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598, U.S.A.

2. Cornell University, Geneva New York State Agricultural Experiment Station, Geneva, NY 14456, U.S.A.

3. Norwegian Institute of Bioeconomy Research, Ås 1431, Norway

4. Norwegian University of Life Sciences, Ås 1433, Norway

5. Independent Researcher

6. Mount Sinai Icahn School of Medicine, Light and Health Research Center, New York, NY 10029, U.S.A.

Abstract

Strawberry powdery mildew, caused by Podosphaera aphanis, can be particularly destructive in glasshouse and plastic tunnel production systems, which generally are constructed of materials that block ultraviolet (UV) solar radiation (about 280 to 400 nm). We compared epidemic progress in replicated plots in open fields and under tunnels constructed of polyethylene, which blocks nearly all solar UV-B, and two formulations of ethylene tetrafluoroethylene (ETFE), one of which contained a UV blocker and another that transmitted nearly 90% of solar UV-B. Disease severity under all plastics was higher than in open-field plots, indicating a generally more favorable environment in containment structures. However, the foliar severity of powdery mildew within the tunnels was inversely related to their UV transmissibility. Among the tunnels tested, incidence of fruit infection was highest under polyethylene and lowest under UV-transmitting ETFE. These effects probably transcend crop, and the blocking of solar UV transmission by glass and certain plastics probably contributes to the widely observed favorability of greenhouse and high-tunnel growing systems for powdery mildew.

Funder

United States Department of Agriculture, National Institute of Food and Agriculture

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3