Morphological and Physiological Responses of Sugarcane to Leifsonia xyli subsp. xyli Infection

Author:

Zhang Xiaoqiu1,Chen Minghui1,Liang Yongjian1,Xing Yongxiu1,Yang Litao1,Chen Minghui2,Comstock Jack C.3,Li Yangrui4,Yang Litao4

Affiliation:

1. Agricultural College, State Key Laboratory of Subtropical Bioresources Conservation and Utilization, Guangxi University, Nanning 530005, China

2. Ping Ding Shan University, Pingdingshan, Henan 46700, China

3. USDA-ARS, Sugarcane Field Station, Canal Point, FL

4. Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences; Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China

Abstract

Ratoon stunt, caused by the bacterium Leifsonia xyli subsp. xyli, is one of the major sugarcane diseases worldwide. The objectives of this study were to determine the variation in morphology and DNA sequence of L. xyli subsp. xyli strains isolated in China, to compare the changes that occurred in vascular ultrastructure and levels of endogenous hormone abscisic acid (ABA), auxins (indoleacetic acid [IAA]), and gibberellic acids (GA3) in sugarcane stalks. Experiments were also conducted with two sugarcane varieties, ‘ROC22’ and ‘Badila’, in the greenhouse to understand the cytological and physiological mechanisms of L. xyli subsp. xyli–induced growth stunting. There were three treatments in the experiments: (i) healthy plants (L. xyli subsp. xyli–free plants), (ii) infected plants (L. xyli subsp. xyli–infected seedcanes treated with hot water, and (iii) infected plants (healthy seedcanes dipped in L. xyli subsp. xyli cell culture). The results showed that sequence coverage of a locally isolated strain, LxxGXBZ01, was 99.99%, and the average nucleotide identity between LxxGXBZ01 and the other well-characterized Brazilian isolate LxxCTCB07 was 93.61%. LxxGXBZ01 occurred in different sizes and shapes in xylem vessels of infected plants. In comparison with healthy stalks, the secondary walls of the vessel element in L. xyli subsp. xyli–infected stalks were degraded with uneven wall thickness, deformities, sticky substances, and electron-dense substances accumulated inside the cells. Compared with the healthy and hot-water treatments, the contents of IAA and GA3 were significantly lower, while that of ABA was significantly higher in the L. xyli subsp. xyli–infected stalks. The information obtained in this study will expand our understanding of ratoon stunt etiology and cytological and physiological bases of the disease manifestation.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3