Characterization of Rice–Magnaporthe oryzae Interactions by Hyperspectral Imaging

Author:

Maina Angeline W.1,Oerke Erich-Christian1ORCID

Affiliation:

1. Institute for Crop Science and Resource Conservation (INRES) - Plant Pathology, Rheinische Friedrich-Wilhelms University of Bonn, Bonn, Germany

Abstract

Hyperspectral imaging has the potential to detect, characterize, and quantify plant diseases objectively and nondestructively to improve phenotyping in breeding for disease resistance. In this study, leaf spectral reflectance characteristics of five rice genotypes diseased with blast caused by three Magnaporthe oryzae isolates differing in virulence were compared with visual disease ratings under greenhouse conditions. Spectral information (140 wavebands, range 450 to 850 nm) of infected leaves was recorded with a hyperspectral imaging microscope at 3, 5, and 7 days postinoculation to examine differences in symptom phenotypes and to characterize the compatibility of host-pathogen interactions. Depending on the rice genotype × M. oryzae genotype interaction, blast symptoms varied from tiny necrosis to enlarged lesions with symptom subareas differing in tissue coloration and indicated gene-for-gene-specific interactions. The blast symptom types were differentiated based on their spectral characteristics in the visible/near-infrared range. Symptom-specific spectral signatures and differences in the composition of leaf blast symptom type(s) resulted in unique spectral and spatial patterns of the rice × M. oryzae interactions based on the size, shape, and color of the symptom subareas. Spectral angle mapper classification of spectra enabled (i) discrimination between healthy (green) and diseased tissue of rice genotypes, (ii) classification and quantification of different blast symptom subareas, and (iii) grading of the host-pathogen compatibility (low – intermediate – high). Hyperspectral imaging was more sensitive to small changes in disease resistance than visual disease assessments and enabled the characterization of various types of resistance/susceptibility reactions of tissue subjected to M. oryzae infection.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3