High Level Activation of Vitamin B1 Biosynthesis Genes in Haustoria of the Rust Fungus Uromyces fabae

Author:

Sohn Jürgen,Voegele Ralf T.,Mendgen Kurt,Hahn Matthias

Abstract

In the rust fungus Uromyces fabae, the transition from the early stages of host plant invasion toward parasitic growth is accompanied by the activation of many genes (PIGs = in planta induced genes). Two of them, PIG1 = THI1) and PIG4 (= THI2), were found to be highly transcribed in haustoria, and are homologous to genes involved in thiamine (vitamin B1) biosynthesis in yeast. Their functional identity was confirmed by complementation of Schizosac-charomyces pombe thiamine auxotrophic thi3 (nmt1) and thi2 (nmt2) mutants, respectively. In contrast to thiamine biosynthesis genes of other fungi that are completely suppressed by thiamine, THI1 and THI2 expression was not affected by the addition of thiamine to rust hyphae grown either in vitro or in planta. Immunoblot analysis revealed decreasing amounts of THI1p in extracts from spores, germlings, and in vitro-grown infection structures with increasing time after inoculation. Immunofluorescence microscopy of rust-infected leaves detected high concentrations of THI1p in haustoria, and only low amounts in intercellu-lar hyphae. In the sporulating mycelium, THI1p was found in the basal hyphae of the uredia, but not in the pedicels and only at very low levels in uredospores. These data indicate that the haustorium is an essential structure of the biotrophic rust mycelium not only for nutrient uptake but also for the biosynthesis of metabolites such as thiamine.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3