Introduction of Plant and Fungal Genes into Pea (Pisum sativum L.) Hairy Roots Reduces Their Ability to Produce Pisatin and Affects Their Response to a Fungal Pathogen

Author:

Wu Qindong,VanEtten Hans D.

Abstract

Pisatin is an isoflavonoid phytoalexin synthesized by pea (Pisum sativum L.). Previous studies have identified two enzymes apparently involved in the synthesis of this phytoalexin, isoflavone reductase (IFR), which catalyzes an intermediate step in pisatin biosynthesis, and (+)6a-hydroxymaackiain 3-O-methyltransferase (HMM), an enzyme catalyzing the terminal step. To further evaluate the involvement of these enzymes in pisatin biosynthesis, sense- and antisense-oriented cDNAs of Ifr and Hmm fused to the 35s CaMV promoter, and Agrobacterium rhizogenes, were used to produce transgenic pea hairy root cultures. PDA, a gene encoding pisatin demethylating activity (pda) in the pea-pathogenic fungus Nectria haematococca, also was used in an attempt to reduce pisatin levels. Although hairy root tissue with either sense or antisense Ifr cDNA produced less pisatin, the greatest reduction occurred with sense or antisense Hmm cDNA. The reduced pisatin production in these lines was associated with reduced amounts of Hmm transcripts, HMM protein, and HMM enzyme activity. Hairy roots containing the PDA gene also produced less pisatin. To evaluate the role of pisatin in disease resistance, the virulence of N. haematococca on the transgenic roots that produced the lowest levels of pisatin was tested. Hairy roots expressing antisense Hmm were more susceptible than the control hairy roots to isolates of N. haematococca that are either virulent or nonvirulent on wild-type pea plants. This appears to be the first case of producing transgenic plant tissue with a reduced ability to produce a phytoalexin and demonstrating that such tissue is less resistant to fungal infection: these results support the hypothesis that phytoalexin production is a disease resistance mechanism.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3