CaHDZ27, a Homeodomain-Leucine Zipper I Protein, Positively Regulates the Resistance to Ralstonia solanacearum Infection in Pepper

Author:

Mou Shaoliang12,Liu Zhiqin13,Gao Feng12,Yang Sheng13,Su Meixia2,Shen Lei13,Wu Yang4,He Shuilin13

Affiliation:

1. National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China;

2. College of Life Science, Fujian Agriculture and Forestry University;

3. College of Crop Science, Fujian Agriculture and Forestry University; and

4. College of Life Science, Jinggang Shan University, Ji’an, Jiangxi 343000, PR China

Abstract

Homeodomain-leucine zipper class I (HD-Zip I) transcription factors have been functionally characterized in plant responses to abiotic stresses, but their roles in plant immunity are poorly understood. Here, a HD-Zip I gene, CaHZ27, was isolated from pepper (Capsicum annum) and characterized for its role in pepper immunity. Quantitative real-time polymerase chain reaction showed that CaHDZ27 was transcriptionally induced by Ralstonia solanacearum inoculation and exogenous application of methyl jasmonate, salicylic acid, or ethephon. The CaHDZ27-green fluorescent protein fused protein was targeted exclusively to the nucleus. Chromatin immunoprecipitation demonstrated that CaHDZ27 bound to the 9-bp pseudopalindromic element (CAATAATTG) and triggered β-glucuronidase expression in a CAATAATTG-dependent manner. Virus-induced gene silencing of CaHDZ27 significantly attenuated the resistance of pepper plants against R. solanacearum and downregulated defense-related marker genes, including CaHIR1, CaACO1, CaPR1, CaPR4, CaPO2, and CaBPR1. By contrast, transient overexpression of CaHDZ27 triggered strong cell death mediated by the hypersensitive response and upregulated the tested immunity-associated marker genes. Ectopic CaHDZ27 expression in tobacco enhances its resistance against R. solanacearum. These results collectively suggest that CaHDZ27 functions as a positive regulator in pepper resistance against R. solanacearum. Bimolecular fluorescence complementation and coimmunoprecipitation assays indicate that CaHDZ27 monomers bind with each other, and this binding is enhanced significantly by R. solanacearum inoculation. We speculate that homodimerization of CaHZ27 might play a role in pepper response to R. solanacearum, further direct evidence is required to confirm it.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3