First Report of Lasiodiplodia theobromae Associated with Decline of Grapevine Rootstock Mother Plants in Spain

Author:

Aroca A.1,Raposo R.1,Gramaje D.2,Armengol J.2,Martos S.3,Luque J.3

Affiliation:

1. CIFOR, INIA, Ctra. La Coruña km 7.5, 28040 Madrid, Spain

2. Instituto Agroforestal Mediterráneo, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain

3. IRTA Cabrils, Ctra. de Cabrils km 2, 08348 Cabrils, Spain

Abstract

A field of Richter 110 rootstock mother plants in Valencia Province (eastern Spain) was surveyed during November 2006 to study the mycoflora of declining plants. Two canes with stunted leaves were collected from a plant with a reduced number of shoots. No cankers or vascular lesions were observed in the collected canes. Six wood chips (1 to 2 mm thick) were taken from one basal fragment (3 to 4 cm long) of each cane, surface sterilized in 70% ethanol for 1 min, and plated on malt extract agar supplemented with 0.5 g L–1 of streptomycin sulfate. Petri dishes were incubated for 7 days at 25°C. A fungus was consistently isolated from all samples that showed the following characteristics: colonies grown on potato dextrose agar (PDA) at 25°C developed a white, aerial mycelium that turned gray after 4 to 6 days and produced pycnidia after 1 month on sterile grapevine slivers of twigs placed on the PDA surface; conidia from culture were ellipsoidal, thick walled, initially hyaline, nonseptate, and measuring 20 to 25 (22.5) × 12 to 14 (13) μm; aged conidia were brown, 1-septate with longitudinal striations in the wall; and pseudoparaphyses variable in form and length were interspersed within the fertile tissue. The fungus was identified as Lasiodiplodia theobromae (Pat.) Griffon & Maubl. from the above characteristics (2). Identity was confirmed by analysis of the nucleotide sequences of the internal transcribed spacer (ITS) region from the rRNA repeat and part of the translation elongation factor 1-alpha (EF1-α) and the β-tubulin (B-tub) genes, as done elsewhere (1,3). BLAST searches at GenBank showed a high identity with reference sequences (ITS: 100%, EF1-α: 97%; B-tub: 99%). Representative sequences of the studied DNA regions were deposited at GenBank (Accession Nos.: ITS: EU254718; EF1-α: EU254719; and B-tub: EU254720). A pathogenicity test was conducted on 1-year-old grapevine plants cv. Macabeo grafted onto Richter 110 rootstocks maintained in a greenhouse. A superficial wound was made on the bark of 10 plants with a sterilized scalpel, ≈10 cm above the graft union. A mycelial plug obtained from the margin of an actively growing fungal colony (isolate JL664) was placed in the wound and the wound was wrapped with Parafilm. Ten additional control plants were inoculated with sterile PDA plugs. All control plants grew normally, and the inoculation wound healed 3 months after inoculation. Plants inoculated with L. theobromae showed no foliar symptoms in the same period, but developed cankers variable in size surrounding the inoculation sites. Vascular necroses measuring 8.4 ± 1.5 cm (mean ± standard error) developed in the inoculated plants that were significantly longer than the controls (0.3 ± 0.2 cm). The pathogen was reisolated from all inoculated plants and no fungus was reisolated from the controls. These results confirmed the pathogenicity of L. theobromae to grapevine and points to a possible involvement of L. theobromae in the aetiology of grapevine decline as previously reported (3,4). To our knowledge, this is the first report of L. theobromae isolated from grapevine in Spain. References: (1) J. Luque et al. Mycologia 97:1111, 2005. (2) E. Punithalingam. No. 519 in: Descriptions of Pathogenic Fungi and Bacteria. CMI, Kew, Surrey, UK, 1976. (3) J. R. Úrbez-Torres et al. Plant Dis. 90:1490, 2006. (4) J. M. van Niekerk et al. Phytopathol. Mediterr. 45(suppl.):S43, 2006.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3