First Report of Powdery Mildew Caused by Oidium neolycopersici on Tomato in China

Author:

Li C. W.1,Pei D. L.1,Wang W. J.1,Ma Y. S.1,Wang L.1,Wang F.1,Liu J. L.1,Zhu W. M.2

Affiliation:

1. Key Laboratory of Plant-Microbe Interactions, Department of Life Science, Shangqiu Normal University, Shangqiu 476000, Henan, P.R. China

2. Shanghai Key Laboratory of Protected Horticulture, Institute of Horticulture, Shanghai Academy of Agricultural Sciences, Shanghai 201106, P.R. China

Abstract

Tomato powdery mildew can cause remarkable reduction in fruit size and quality (4). In March of 2008, powdery mildew appeared as circular, white colonies on leaves, petioles, and stems of tomato plants grown in greenhouses in Shangqiu, Henan Province, China. The pathogenic fungus had unbranched conidiophores with an average length of 58.4 μm and width of 5.1 μm. Conidia were hyaline, elliptical, and were borne singly. Average length and width of conidia were 30.6 and 15.1 μm, respectively. Germ tubes were straight and formed at the ends or very close to the ends of conidia. Chasmothecium was not found in the collected samples. Different tomato cultivars and species, including Lycopersicon esculentum Mill (cvs. Moneymaker, Micro-Tom, Zaofen, Fenguo, and Zhongza series), L. peruvianum cv. LA2172, and L. hirsutum cv. G1.1560, were inoculated with a conidial suspension with a concentration of 5 × 104 conidia/ml. Plants developed powdery mildew symptoms as early as 4 days after inoculation. Susceptible symptoms developed on all L. esculentum cultivars, while L. peruvianum LA2172 and L. hirsutum G1.1560 displayed complete resistance, which is similar to the results of Bai et al 2004 (1) and Lindhout and Pet 1990 (3). Morphological characteristics of the pathogen on susceptible genotypes were similar to those from naturally infected plants. On the basis of the characteristics of the asexual stage, the pathogen was identified as an isolate of Oidium neolycopersici L. Kiss, which was confirmed by internal transcribed spacer (ITS) sequence analysis. PCR amplification and sequencing of the ITS region were performed with primers ITS1 and ITS4. The nucleotide sequence was assigned GenBank Accession No. EU486992, which had a 100% homology with 10 ITS sequences of O. neolycopersici in GenBank (Accession Nos. EU047559 to 047568) (2). In Asia, the spread of this pathogen has been recently reported in Japan (2). To our knowledge, this is the first report of tomato powdery mildew in China. Voucher specimens are available at the Specimen Center in the Department of Life Science, Shangqiu Normal University. References: (1) Y. Bai et al. Mol. Plant-Microbe. Interact. 18:354, 2005. (2) T. Jankovics et al. Phytopathology 98:529, 2008. (3) P. Lindhout and G. Pet. Tomato Gen. Coop. Rep. 40:19, 1990. (4) J. M. Whipps et al. Plant Pathol. 47:36, 1998.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3