Black Root Rot Caused by Thielaviopsis basicola on Lettuce in California

Author:

Koike S. T.1

Affiliation:

1. University of California Cooperative Extension, Salinas 93901

Abstract

In 2005 and 2006, field-grown iceberg lettuce (Lactuca sativa) in California's coastal Salinas Valley (Monterey County) was affected by a previously unreported disease. Symptoms were observed on iceberg lettuce at the post-thin rosette stage (8 to 12 leaves). Plants were stunted and slightly chlorotic. Fine feeder roots had numerous, small (4 to 8 mm long), elongated, dark brown-to-black lesions. Larger secondary roots and taproots lacked lesions. No vascular discoloration was present. Isolations from root lesions consistently resulted in gray fungal colonies that formed catenulate, cylindrical, thin-walled, hyaline endoconidia and catenulate, subrectangular, thick-walled, dark aleuriospores. The fungus was identified as Thielaviopsis basicola (2). Conidial suspensions (5.0 × 105) of eight isolates from iceberg lettuce were used for pathogenicity tests. Iceberg cv. Ponderosa and romaine cv. Winchester were grown for 3 weeks in soilless peat moss rooting mix. Roots of 20 plants per cultivar were washed free of the rooting mix and soaked in conidial suspensions for 5 min. Plants were repotted and grown in a greenhouse. Control plant roots were soaked in sterile distilled water (SDW). After 3 weeks, inoculated iceberg exhibited slight chlorosis in comparison with control plants. Feeder roots of all iceberg plants inoculated with the eight isolates exhibited numerous black lesions and T. basicola was reisolated from these roots. Romaine lettuce, however, did not show any foliar symptoms. Small segments of roots had tan-to-light brown discoloration and T. basicola was occasionally reisolated (approximately 40% recovery). Roots of control iceberg and romaine showed no symptoms. Results were similar when this experiment was repeated. To explore the host range of T. basicola recovered from lettuce, two isolates were prepared and inoculated as described above onto 12 plants each of the following: iceberg lettuce (cv. Ponderosa), bean (cv. Blue Lake), broccoli (cv. Patriot), carrot (cv. Long Imperator #58), celery (cv. Conquistador), cotton (cv. Phy-72 Acala), cucumber (cv. Marketmore 76), green bunching onion (cv. Evergreen Bunching), parsley (cv. Moss Curled), pepper (cv. California Wonder 300 TMR), radish (cv. Champion), spinach (cvs. Bolero and Bossanova), and tomato (cv. Beefsteak). Control plant roots of all cultivars were soaked in SDW. After 4 weeks, only lettuce and bean roots had extensive brown-to-black lesions, from which the pathogen was consistently resiolated. Roots of cotton, pepper, spinach, and tomato had sections of light brown-to-orange discoloration; the pathogen was not consistently recovered from these sections. All other species and the control plants were symptomless. This experiment was repeated with similar results except that inoculated peppers were distinctly stunted compared with control plants. To my knowledge, this is the first report of black root rot caused by T. basicola on lettuce in California. Disease was limited to patches along edges of iceberg lettuce fields; disease incidence in these discrete patches reached as high as 35%. Affected plants continued to grow but remained stunted in relation to unaffected plants and were not harvested. Black root rot of lettuce has been reported in Australia (1); that report also showed that lettuce cultivars vary in susceptibility to T. basicola and isolates from lettuce were highly aggressive on bean but not on many other reported hosts of this pathogen. References: (1) R. G. O'Brien and R. D. Davis. Australas. Plant Pathol. 23:106, 1994. (2) C. V. Subramanian. No. 170 in: Descriptions of Pathogenic Fungi and Bacteria. CMI, Kew, Surrey, UK, 1968.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3