Analysis of Factors That Influence the Epidemiology of Sclerotinia minor on Peanut

Author:

Smith D. L.1,Hollowell J. E.1,Isleib T. G.2,Shew B. B.3

Affiliation:

1. Department of Plant Pathology

2. Department of Crop Science

3. Department of Plant Pathology, North Carolina State University, Raleigh 27695

Abstract

In North Carolina, sclerotia of Sclerotinia minor germinate myceliogenically to initiate infections on peanut. The effects of soil temperature and soil matric potential (ψM on germination and growth of S. minor have not been well characterized, and little is known about relative physiological resistance in different parts of the peanut plant. Laboratory tests examined the ability of the fungus to germinate, grow, and infect detached peanut leaflets at soil temperatures ranging from 18 to 30°C at ψM of -100, -10, and -7.2 kPa. In addition, detached pegs, leaves, main stems, and lateral branches from three peanut lines varying in field resistance were examined for resistance to infection by S. minor. Sclerotial germination was greatest at 30°C and ψM of -7.2 kPa. Final mycelial diameters decreased with decreasing ψM, whereas soil matric potential did not affect lesion development. Mycelial growth and leaflet lesion expansion were maximal at 18 or 22°C. Soil ψM did not affect leaflet infection and lesion expansion. Lesions were not observed on leaves incubated at temperatures of 29°C or above, but developed when temperatures were reduced to 18 or 22°C 2 days after inoculation. Pegs and leaflets were equally susceptible to infection and were more susceptible than either main stems or lateral branches. Results of this work, particularly the effects of temperature on S. minor, and knowledge of peanut part susceptibility has application in improving Sclerotinia blight prediction models for recommending protective fungicide applications.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3