Evaluating the utilization of synthetic oligonucleotides as a positive control in the detection of ToBRFV in pepper seeds

Author:

McKenzie Zen1,Sturdivant Max2,Ueckert Jake34,Ong Kevin L.5

Affiliation:

1. Texas A&M University College Station, 14736, College Station, Texas, United States, ;

2. Texas A&M University College Station, 14736, College Station, Texas, United States;

3. Texas A&M University System, 2655, Plant Pathology and Microbiology, 496 Olsen Blvd, 2132 TAMU, College Station, College Station, Texas, United States, 77845-3424,

4. United States;

5. Texas AgriLife Extension Service, Plant Pathology & Microbiology, 1500 Research Parkway, Ste A130, TX Plant Disease Diagnostic Lab, College Station, Texas, United States, 77845, , ;

Abstract

A constant challenge experienced by plant diagnostic laboratories is having reliable and readily available controls. Often, requests must be made from colleagues to obtain materials for use as controls. This can be problematic if the pathogen is not present in the country and/or is subject to regulations. gBlocks™ are synthetic oligonucleotides that are widely used in genomic-based applications and studies. We evaluated the use of synthesized gBlocks™ as a positive control for tomato brown rugose fruit virus (ToBRFV) in a seed extraction PCR (SE-PCR) assay. ToBRFV is a highly virulent Tobamovirus that expresses symptoms of mosaic patterns, browning, and undersized wrinkled fruits in tomatoes, peppers, and other solanaceous plants. Transmission occurs in the seeds and can spread via mechanical contamination of equipment, humans, and other infected plants. Regulations with ToBRFV in the US makes it difficult to obtain a positive biological control for use in diagnostic clinics. Therefore, we wanted to assess if this synthetic oligonucleotide could serve as a process control. In our study, pepper (Capsicum annuum) seeds were “spiked” with synthesized oligonucleotides, which were then used as a point of comparison to biologically positive seeds and negative controls by way of quantifying viral titer. The stability of these synthesized oligonucleotides was evaluated over several temperatures and temporal parameters. Our results suggest that the oligonucleotides are suitable for use in the production of synthetically contaminated seeds that are to be used as a positive control in the validation of the diagnostic process for ToBRFV.

Publisher

Scientific Societies

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3