Pseudomonas syringae pv. tomato Strains from New York Exhibit Virulence Attributes Intermediate Between Typical Race 0 and Race 1 Strains

Author:

Kraus Christine M.1,Mazo-Molina Carolina1,Smart Christine D.2,Martin Gregory B.3ORCID

Affiliation:

1. Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853

2. Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University

3. Boyce Thompson Institute for Plant Research, and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University

Abstract

Bacterial speck disease, caused by Pseudomonas syringae pv. tomato, is a persistent problem for fresh-market tomato growers in New York. Race 0 strains of this pathogen express either or both of the type III effectors AvrPto or AvrPtoB, which are recognized by tomato varieties expressing the Pto resistance gene. Pto encodes a protein kinase that activates the host immune system, thereby inhibiting bacterial multiplication and preventing disease development. Race 1 P. syringae pv. tomato strains do not express these effectors and are virulent on tomato whether or not the variety expresses Pto. Very few fresh-market tomato varieties have the Pto gene. We collected six P. syringae pv. tomato strains from naturally infected tomato plants across New York in 2015 and characterized them for their virulence and for the presence of specific effectors. In experiments conducted in the greenhouse, all strains reached population sizes in Pto-expressing tomato leaves that were intermediate between typical race 0 and race 1 strains. This phenotype has not been observed previously and suggests that the strains are recognized by Pto but such recognition is compromised by another P. syringae pv. tomato factor. The strains were found to encode avrPto, which is transcribed and translated. They also express avrPtoB although, as reported for other P. syringae pv. tomato strains, protein expression for this effector was not detectable. Deletion of avrPto from a representative New York strain allowed it to reach high populations in Pto-expressing tomato varieties, without compromising its virulence on susceptible tomato plants. Collectively, our data suggest that introgression of the Pto gene into fresh-market tomato varieties could enhance protection against extant P. syringae pv. tomato strains.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3