First Report of Fusarium oxysporum and F. proliferatum Causing Postharvest Corm Rot on Taro in China

Author:

Ye Ying1,Liu Bing2,Xiong Guihong3,Zhou Qinghong4,Huang Yingjin4,Zhu Qianglong5,Jiang Junxi6

Affiliation:

1. Jiangxi Agricultural University, 91595, College of Agriculture, Jiangxi Nanchang economic and technological development zone, Nanchang, China, 330045;

2. Jiangxi Agricultural University, 91595, College of Agriculture, Nanchang, Jiangxi, China;

3. Jiangxi Agricultural University, 91595, College of Agriculture in JiangXi Agricultural University, Nanchang, Jiangxi, China;

4. Jiangxi Agricultural University, 91595, College of Agriculture , Nanchang, Jiangxi, China;

5. Hairbin, China;

6. Jiangxi Agricultural University, 91595, College of Agriculture, Zhimin Street 1101, Nanchang, Jiangxi, China, 330045;

Abstract

Taro (Colocasia esculenta), a perennial tuberous herb of the family Araceae, is cultivated widely in southern China. In December 2020, postharvest corm rot occurred on taro of 5 tons with approximately 70% incidence in a 18 square meter cellar in the Qingshanhu District (115°83’E, 28°76’N) of Nanchang City, Jiangxi Province, China. Infected corms had round, soft and slightly sunken lesions covered with white mycelia. The lesions gradually expanded, causing part or whole corm to become soft and shrink, and the inner corm tissue turned brown and rotten. To isolate the pathogen, a total of 30 diseased corm samples were collected. The corms were surface-disinfected by wiping them with 70% ethanol and then passing them over flame back and forth for 5 s. After epidermal tissue of the corms was removed using a sterilized scalpel, small portions of the inner tissue were transferred onto potato dextrose agar (PDA) and incubated at 25°C in the dark. A total of 27 isolates forming Fusarium-like colonies were obtained using monosporic isolation, of which 11 isolates were identified as F. oxysporum and 16 isolates were identified as F. proliferatum based on the colony characteristics and conidial morphology (Leslie and Summerell, 2006). Colonies of F. oxysporum isolates produced dense whitish to light purple mycelia with dark red pigments. Macroconidia were sickle-shaped, straight to slightly curved, 3-5 septa, measuring 25.6 to 45.8 × 3.3 to 6.1 µm. Microconidia were hyaline, oval or ellipsoid, aseptate, and measured 5.2 to 11.8 × 2.2 to 3.5 µm. Chlamydospores were round, 3.5 to 7.6 µm in diameter. Colonies of F. proliferatum isolates were whitish with abundant aerial mycelia and orange pigments. Numerous oval unicellular microconidia were 4.5 to 11.8 × 1.9 to 4.2 µm, and sparse falcate macroconidia with 3-4 septa were 19.4 to 39.2 × 1.9 to 5.2 µm in size. No chlamydospores were observed. Genomic DNA of two representative isolates (F. oxysporum isolate YTU1 and F. proliferatum isolate YTH1) was extracted, and the internal transcribed spacer (ITS) region and translation elongation factor 1-α (TEF1-α) gene were amplified and sequenced using primers ITS1/ITS4 and EF-1H/EF-2T (White et al., 1990; Zhang et al., 2014) respectively. Using BLAST analysis, the ITS sequences of isolates YTU1 (506 bp) and YTH1 (508 bp) exhibited 100% homology with F. oxysporum (MN633363) and F. proliferatum (MT534188), respectively, and the TEF1-α sequences of YTU1 (712 bp) and YTH1 (703 bp) shared 100% homology with F. oxysporum (MN507110) and F. proliferatum (MK952799), respectively. Sequences were deposited in GenBank with the Accession Nos. MZ157124 and MZ310443 for ITS, and MZ383814 and MZ383815 for TEF1-α. The pathogenicity of each isolate was determined on six healthy taro corms. All the taro corms were surface-disinfected with 70% alcohol and two locations from each corm were inoculated. One location was inoculated with 20 μl of conidial suspension (1×105 conidia/ml) and the other was inoculated with sterilized water as a control. All corms were incubated in a growth chamber at 25℃ and 95% relative humidity in the dark. After 15 days, all inoculated corms developed brown rot symptoms, while the non-inoculated control corms remained symptomless. The original isolates were successfully reisolated from all symptomatic corms and identified by sequencing, fulfilling Koch's postulates. F. oxysporum has been reported causing postharvest corm rot of taro in Bogor, Japan, and British Solomon Islands (Widodo et al., 2011). However, to our knowledge, this is the first report of F. oxysporum causing postharvest corm rot of taro in China and F. proliferatum causing postharvest corm rot of taro in the world. The disease poses a potential threat to taro production and should be timely assessed and properly managed.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3