Detection of Xanthomonas translucens pv. undulosa, pv. translucens, and pv. secalis by Quantitative PCR

Author:

Sarkes Alian1,Yang Yalong1,Dijanovic Snezana1,Fu Heting1,Zahr Kher1,Harding Michael W.2ORCID,Feindel David1,Feng Jie1ORCID

Affiliation:

1. Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture, Forestry and Rural Economic Development (AAFRED), Edmonton, AB, T5Y 6H3, Canada

2. Crop Diversification Centre South, AAFRED, Brooks, AB, T1R 1E6, Canada

Abstract

A probe-based quantitative PCR (qPCR) protocol was developed for detection and evaluation of the wheat bacterial leaf streak pathogen Xanthomonas translucens pathovar (pv.) undulosa. The protocol can also detect X. translucens pv. translucens and X. translucens pv. secalis but can’t differentiate the three pathovars. When tested on nontarget DNA (i.e., from plant; bacteria other than X. translucens pv. undulosa, X. translucens pv. translucens, and X. translucens pv. secalis; and culture of microorganisms from wheat grains), the qPCR showed a high specificity. On purified X. translucens pv. undulosa DNA, the qPCR was more sensitive than a loop-mediated isothermal amplification assay. When DNA samples from a set of serial dilutions of X. translucens pv. undulosa cells were tested, the qPCR method could repeatedly generate quantification cycle (Cq) values from the dilutions containing ≥1,000 cells. Since 2 µl of the total 50 µl of DNA was used in one reaction, one qPCR reaction could detect the presence of the bacteria in samples containing as few as 40 bacterial cells. The qPCR could detect the bacteria from both infected grain and leaf tissues. For seed testing, a protocol for template preparation was standardized, which allowed one qPCR reaction to test DNA from the surface of one wheat grain. Thus, the qPCR system could detect X. translucens pv. undulosa, X. translucens pv. translucens, and/or X. translucens pv. secalis in samples where the bacteria had an average concentration of ≥40 cells per grain.

Funder

Canadian Agricultural Partnership

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3