Cytological Observation of the Infectious Process of Venturia carpophila on Peach Leaves

Author:

Zhou Yang1ORCID,Zhang Lei2,Ji Chuan-Ya1,Chaisiri Chingchai1,Yin Liang-Fen3,Yin Wei-Xiao4ORCID,Luo Chao-Xi14ORCID

Affiliation:

1. Key Lab of Horticultural Plant Biology, Ministry of Education and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

2. Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China

3. Experimental Teaching Center of Crop Science and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

4. Hubei Key Lab of Plant Pathology, and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

Abstract

Peach scab caused by Venturia carpophila is one of the most destructive fungal diseases of peach worldwide, and it seriously affects peach production. Until now,the infectious process and pathogenesis of V. carpophila on peach have remained unclear. Here we present the infection behavior of V. carpophila at the ultrastructural and cytological levels in peach leaves with combined microscopic investigations (i.e., light microscopy, confocal laser scanning microscopy, scanning electron microscopy, and transmission electron microscopy). V. carpophila germinated at the tip of conidia and produced short germ tubes on peach leaf surfaces at 2 days post inoculation (dpi). At 3 dpi, swollen tips of germ tubes differentiated into appressoria. At 5 dpi, penetration pegs produced by appressoria broke through the cuticle layer and then differentiated into thick subcuticular hyphae in the pectin layer of the epidermal cell walls. At 10 dpi, the subcuticular hyphae extensively colonized in the pectin layer. The primary hyphae ramified into secondary hyphae and proliferated along with the incubation. At 15 dpi, the subcuticular hyphae divided laterally to form stromata between the cuticle layer and the cellulose layer of the epidermal cells. At 30 dpi, conidiophores developed from the subcuticular stromata. Finally, abundant conidiophores and new conidia appeared on leaf surfaces at 40 dpi. These results provide useful information for further a understanding of V. carpophila pathogenesis.

Funder

China Agriculture Research System of MOF and MARA

Fundamental Research Funds for the Central Universities

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3