First Report of Cucumber mosaic virus Subgroup IA Isolate Infecting Yucca aloifolia in Italy

Author:

Parrella G.1,Greco B.1

Affiliation:

1. Istituto per la Protezione delle Piante del CNR, UOS di Portici, Via Università 133, 80055 Portici (NA), Italy. This research was supported by the Campania Region, Italy (2013 Plan of Phytosanitary Action)

Abstract

Yucca aloifolia L. (Spanish bayonet), family Asparagaceae, is the type species of the genus Yucca. It is native to Mexico and the West Indies and is appreciated worldwide as an ornamental plant. In 2013, during a survey for viruses in ornamental plants in the Campania region of southern Italy, symptoms consisting of bright chlorotic spots and ring spots 1 to 3 mm in diameter with some necrotic streaks were observed on leaves of two plants of Y. aloifolia growing in a nursery located in the Pignataro Maggiore municipality, Caserta Province. Cucumber mosaic virus (CMV) infection was suspected because the symptoms resembled those caused by CMV in Yucca flaccida (1). A range of herbal plant indicators was inoculated with sap extracts of symptomatic Y. aloifolia plants and developed symptoms indicative of CMV. Furthermore, 30 nm isometric virus particles were observed in the same Y. aloifolia sap extracts by transmission electron microscopy. The identity of the virus was confirmed by positive reaction in ELISA tests with CMV polyclonal antisera (Bioreba) conducted on sap extracts of symptomatic Y. aloifolia plants and systemically infected symptomatic hosts (i.e., Nicotiana tabacum, N. glutinosa, Cucumber sativus cv. Marketer, Solanum lycopersicum cv. San Marzano). The presence of CMV in the two naturally infected Y. aloifolia and other mechanically inoculated plants was further verified by reverse transcription (RT)-PCR. Total RNAs were extracted with the E.Z.N.A. Plant RNA Kit (Omega Bio-Tek), according to the manufacturer's instructions. RT-PCR was carried out with the ImProm-II Reverse Transcription System first-strand synthesis reaction (Promega) using the primer pair CMV1 and CMV2 (2). These primers amplify part of the CP gene and part of the 3′-noncoding region of CMV RNA3 and were designed to produce amplicons of different sizes to distinguish CMV isolates belonging to subgroups I or II (3). RT-PCR products were obtained from both naturally infected Y. aloifolia and mechanically inoculated plants as well as from PAE1 isolate of CMV (2), used as positive control, but not from healthy plants. Based on the length of the amplicons obtained (487 bp), the CMV isolate from Y. aloifolia (named YAL) belonged to subgroup I (3). The amplified RT-PCR products were purified with QIAquick PCR Purification Kit (Qiagen), cloned in the pGEMT vector (Promega), and three independent clones were sequenced at MWG (Ebersberg, Germany). Sequences obtained from the two CMV-infected Y. aloifolia plants were identical. This sequence was deposited at GenBank (Accession No. HG965199). Multiple alignments of the YAL sequence with sequences of other CMV isolates using MEGA5 software revealed highest percentage of identity (98.9%) with the isolates Z (AB369269) and SO (AF103992) from Korea and Japan, respectively. Moreover, the YAL isolate was identified as belonging to subgroup IA, based on the presence of only one HpaII restriction site in the 487-bp sequence, as previously proposed (2). Although CMV seems to not be a major threat currently for the production of Y. aloifolia, because the farming of this plant is performed using vegetative propagation, particular attention should be given to the presence of the virus in donor mother plants in order to avoid the dispersion of infected plants that could serve as sources for aphid transmission to other susceptible plant species. To our knowledge, this is the first report of CMV infection of Y. aloifolia in the world. References: (1) I. Bouwen et al. Neth. J. Plant Pathol. 84:175, 1978. (2) G. Parrella and D. Sorrentino. J. Phytopathol. 157:762, 2009. (3) Z. Singh et al. Plant Dis. 79:713, 1995.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cucumber mosaic virus (cucumber mosaic);CABI Compendium;2022-01-07

2. Yucca spp.;Encyclopedia of Plant Viruses and Viroids;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3