Identification and Fine-Mapping of a Novel QTL, qMrdd2, That Confers Resistance to Maize Rough Dwarf Disease

Author:

Xu Zhennan12,Wang Feifei2,Zhou Zhiqiang2,Meng Qingchang3,Chen Yanping3,Han Xiaohua4ORCID,Tie Shuanggui4,Liu Changlin2,Hao Zhuanfang2,Li Mingshun2,Zhang Degui2,Han Jienan2,Wang Zhenhua2,Li Xinhai1,Weng Jianfeng1ORCID

Affiliation:

1. Institute of Crop Science, Chinese Academy of Agricultural Science, Haidian District, Beijing 100081, China

2. Northeast Agricultural University, XiangFang District, Harbin, Heilongjiang 150030, China

3. Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Xuanwu District, Nanjing 210014, China

4. The Cereal Crops Institute, Henan Academy of Agricultural Sciences, Jinshui District, Zhengzhou 450002, China

Abstract

Maize rough dwarf disease (MRDD) is caused by a virus and seriously affects maize quality and yield worldwide. MRDD can be most effectively controlled with disease-resistant hybrids of corn. Here, MRDD-resistant (Qi319) and -susceptible (Ye478) parental inbred maize lines and their 314 recombinant inbred lines (RILs) that were derived from a cross between them were evaluated across three environments. A stable resistance QTL, qMrdd2, was identified and mapped using best linear unbiased prediction (BLUP) values to a 0.55-Mb region between the markers MK807 and MK811 on chromosome 2 (B73 RefGen_v3) and was found to explain 8.6 to 11.0% of the total phenotypic variance in MRDD resistance. We validated the effect of qMrdd2 using a chromosome segment substitution line (CSSL) that was derived from a cross between maize inbred Qi319 as the MRDD resistance donor and Ye478 as the recipient. Disease severity index of the CSSL haplotype II harboring qMrdd2 was significantly lower than that of the susceptible parent Ye478. Subsequently, we fine-mapped qMrdd2 to a 315-kb region flanked by the markers RD81 and RD87, thus testing recombinant-derived progeny using selfed backcrossed families. In this study, we identified a novel QTL for MRDD resistance by combining the RIL and CSSL populations, thus providing important genetic information that can be used for breeding MRDD-resistant varieties of maize.

Funder

National Natural Science Foundation of China

China Academy of Agricultural Sciences Innovation Project

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3