Characterization of Molecular Identity and Pathogenicity of Rice Blast Fungus in Hunan Province of China

Author:

Xing Junjie1,Jia Yulin2,Peng Zhirong3,Shi Yinfeng3,He Qiang3,Shu Fu3,Zhang Wuhan3,Zhang Zhen4,Deng Huafeng5

Affiliation:

1. State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China

2. United States Department of Agriculture–Agricultural Research Service, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160

3. State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center

4. Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China

5. State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, and Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China

Abstract

The blast (Magnaporthe oryzae) resistance (R) gene is the most economical and environmental method to control rice blast disease. Characterization of molecular identity and pathogenicity of M. oryzae benefits the deployment of effective blast R genes. In order to identify blast R genes that would be effective in Hunan Province,182 M. oryzae strains were analyzed with a Chinese differential system (CDS), repetitive element-based polymerase chain reaction (rep-PCR), and the presence and absence of avirulence (AVR) genes by PCR amplification with gene-specific primers. Identified blast R genes were validated with 24 monogenic lines (ML) carrying 24 major R genes. In total, 28 races (isolates) of M. oryzae was identified with CDS, and classified into 20 distinct groups with rep-PCR. Interestingly, AVR-Pia, AVR-Pik, AVR-Pizt, AVR-Pib, and AVR-Pi9 were detected in more than 86.8% of the isolates; AVR-Pita1 was in 51.3% and AVR-Pii was in only 2.5%. In contrast, pathogenicity assays on 24 ML demonstrated that Pi9, Piz5, Pikh, and Pikm were more effective, with resistant frequencies of 91.6, 91, 87.9, and 87.3%, respectively; Pia, Piks, Pit, Pi12, and Pib were less than 15%. These findings revealed the complexity of a genetic basis of rice blast resistance, and shed light on useful blast R genes in Hunan Province.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3