Difenoconazole Resistance Shift in Botrytis cinerea From Tomato in China Associated With Inducible Expression of CYP51

Author:

Zhang Can1ORCID,Imran Muhammad1,Xiao Lu1,Hu Zhihong1,Li Guixiang2,Zhang Fan1,Liu Xili12ORCID

Affiliation:

1. Department of Plant Pathology, China Agricultural University, Beijing 100193, China

2. State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China

Abstract

Gray mold caused by Botrytis cinerea is one of the most important diseases in tomato. It can be controlled effectively by demethylation inhibitor (DMI) fungicides, but their resistance status after long-term use in the field is unclear. The baseline sensitivity to difenoconazole of 142 B. cinerea isolates from China with no history of DMI usage was characterized, with a mean effective concentration for 50% mycelial growth inhibition (EC50) of 0.97 ± 0.50 μg/ml. EC50 values for difenoconazole sensitivity of another 248 isolates collected in 2011 and 2016 ranged from 0.04 to 11.99 μg/ml, and the frequency of difenoconazole sensitivity formed a nonnormal distribution curve. Detached fruit studies revealed that isolates with EC50 values of approximately 6.00 μg/ml were not controlled effectively. The mean EC50 of the resistant isolates changed from 6.74 to 8.65 μg/ml between 2011 and 2016. Positive cross-resistance was only observed between difenoconazole and two DMIs. One dual resistant isolate and one triple resistant isolate were found among the difenoconazole-resistant isolates collected in 2016, associated with point mutations in corresponding target proteins of the fungicides azoxystrobin and fludioxonil. This indicated that B. cinerea not only showed higher difenoconazole resistance levels but gradually changed from single to multiple fungicide resistance over time. No amino acid variation was found in the CYP51 protein. In the absence of difenoconazole, the relative expression of CYP51 was not significantly different in sensitive and resistant isolates. Induced expression of CYP51 is an important determinant of DMI resistance in B. cinerea from tomato. However, nucleotide variants found in the upstream region had no association with the fungicide resistance phenotype. These results will be helpful for the management of B. cinerea in the field.

Funder

National Key Research and Development Programs of China

National High Technology Research and Development Program of China

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3