First report of Truncatella angustata causing leaf blight on Thuja plicata Donn ex D. Don in Canada

Author:

Noshad David12,van der Merwe Lise3,Yanchuk Alvin45

Affiliation:

1. British Columbia Ministry of Forests, 8199, Forest Improvement and Research, Victoria, British Columbia, Canada,

2. University of Victoria Faculty of Science, 124609, Biology, Victoria, British Columbia, Canada;

3. British Columbia Ministry of Forests, 8199, Forest Improvement and Research, Victoria, British Columbia, Canada;

4. British Columbia Ministry of Forests, 8199, Forest Improvement and Research, Victoria, British Columbia, Canada

5. University of Victoria Faculty of Science, 124609, Biology, Victoria, British Columbia, Canada;

Abstract

Western redcedar (Thuja plicata Donn ex D. Don) is one of the most important commercial tree species in British Columbia, generates more than $1 billion in economic activity annually and about 8-10 million trees are planted in reforestation efforts (Gregory et al. 2018). It has been selected as the provincial tree of British Columbia (BC) because of its tremendous economic, ecoogical and cultural value. However, foliar diseases such as leaf blights have serious impact on redcedar growth and may cause significant loss of tree volume (Russell, 2007). Our 2014 - 2015 surveys of western redcedar forests in coastal areas of BC indicated high incidence of a distinctive type of blight. We observed the incidence of this disease on more than 80% of western redcedar (approximately 493) trees from late May to early December. Early symptoms appeared as circular to oval, brownish to black spots (2–3 mm), 1–5 spots per branch tip, scattered at the tip margins. Sequentially, the spots enlarged and developed into necrotic lesions on both young and old leaves. More than 50 symptomatic leaves from 10 different trees were collected and rinsed in distilled water then surface-sterilized with three times washing in Tween 20 (%5 solution) for 2 minutes (each time) and %70 ethanol for 30 second (3 times repeat). Tissues from under lesions were placed on MEA (Malt Extract Agar; Phyto Tech® labs-Product ID: M498) and PDA (Potato Dextrose Agar; Phyto Tech® Labs-Product ID: P772). The plates were incubated at 21°C in the dark. They developed distinct dull white to brown, cottony colonies with each black acervuli approximately 450-500µm. The isolates produced fusiform conidia with four cells. They didn’t have any distinct color. The conidiophore size was approximately 23-24 x 2-3 µm with mostly hyaline to light brown color, branched and conidiogenous was hyaline and not branched and simple. The spore size was approximately 15-20μm by 7-10μm with three transverse septa and endogenous papillae with hyaline apical appendages. Next, we collected spores and replated them on fresh MEA media culture and placed back in the incubator to produce pure cultures. We studied conidia from leaves of trees mentioned above using light and electron microscopy using Hitachi S-3500N Scanning Electron Microscope (Noshad et al. 2023). After morphological study, further identification to the species level conducted using Zambounis and Wenneker’s approach (Zambounis 2019; Wenneker,2017). Genomic DNA from two single-spore isolates were isolated and sequenced. Sequences of ITS (Internal Transcribed Spacer) region amplified using primers ITS1/ITS4 and sequenced. Final sequences were deposited in Genbank and published (accession numbers OP086244 and OP086251). Blast analysis of these sequences showed 99% and 99% resemblances with T. angustata sequence (Sutton 1980). To verify its pathogenicity, we performed a comprehensive pathogenicity test to fulfill Koch’s postulates. We collected their distinctive spores in an aseptic environment and standardized them (5000/ml) using a haemocytometer. Then we inoculated 100 western redcedar seedlings (three years old) by injecting standardized spore suspension solution (inoculum) using ultra-fine 0.3ml, 31G, 8mm syringes (approximately 0.1ml per inoculation site). Ten positive control seedlings were inoculated with distilled water and ten negative control seedlings were not inoculated at all. All inoculated (experimental) seedlings demonstrated same symptoms (black spots and characteristic spores) after eight weeks. None of the control seedlings showed any similar symptoms. In the next stage, we isolated and cultured spores from inoculated seedlings and studied them. The identity of reisolates confirmed using DNA sequencing. We used these spores for our next set of disease screening which was successful again. We identified Truncatella angustata (Pers.) Hughes as the causal agent for shoot-tip blight (STB) on western redcedar by examining morphological and molecular characteristics of the pathogen. This is the first report of T. angustata as a primary pathogen on western redcedar in British Columbia, Canada.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3