Role of rain in the spore dispersal of fungal pathogens associated with grapevine trunk diseases

Author:

Ji Tao1,Altieri Valeria1,Salotti Irene2,Li Ming3,Rossi Vittorio4

Affiliation:

1. Università Cattolica del Sacro Cuore - Campus di Piacenza e Cremona, 96985, Department of Sustainable Crop Production (DI.PRO.VES.), Piacenza, Emilia-Romagna, Italy;

2. Università Cattolica del Sacro Cuore Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, 550374, Department of Sustainable Crop Production - DI.PRO.VES, via Emilia Parmense, 84, Piacenza, Emilia-Romagna, Italy, 29122;

3. National Engineering Research Center for Information Technology in Agriculture, 205339, Beijing, Beijing, China;

4. Università cattolica del Sacro Cuore, Entomology and Plant Pathology, Via E. Parmense 84, Piacenza, Piacenza, Italy, 29100, , ;

Abstract

Grapevine trunk diseases are caused by a complex of fungi that belong to different taxa, which produce different spore types and have different spore dispersal mechanisms. It is commonly accepted that rainfall plays a key role in spore dispersal, but there is conflicting information in the literature on the relationship between rain and spore trapping in aerobiology studies. We conducted a systematic literature review, extracted quantitative data from published papers, and used the pooled data for Bayesian analysis of the effect of rain on spore trapping. We selected 17 papers covering 95 studies and 8,778 trapping periods, concerning a total of 26 fungal taxa causing Botryosphaeria dieback (BD), Esca complex (EC), and Eutypa dieback (ED). Results confirmed the role of rain in the spore dispersal of these fungi, but revealed differences among the different fungi. Rain was a good predictor of spore trapping for ED (AUROC = 0.820) and BD (0.766) but not for the Ascomycetes involved in EC (0.569) and not for the only Basidiomycetes, Fomitiporella viticola, studied as for spore discharge (AUROC not significant). Prediction of spore trapping was more accurate for negative than for positive prognosis; a rain cutoff of ≥0.2 mm provided an overall accuracy ≥0.61 for correct prognoses. Spores trapped in rainless periods accounted for only <10% of the total spores. Our analysis had some drawbacks, which were mainly caused by knowledge gaps and limited data availability; these drawbacks are discussed to facilitate further research.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3