Mapping and Comparative Analysis of QTL for Crown Rust Resistance in an Italian × Perennial Ryegrass Population

Author:

Sim S.,Diesburg K.,Casler M.,Jung G.

Abstract

Crown rust (Puccinia coronata f. sp. lolli) is a serious fungal foliar disease of perennial ryegrass (Lolium perenne L.) and Italian ryegrass (L. multiflorum Lam.), which are important forage and turf species. A number of quantitative trait loci (QTL) for crown rust resistance previously were identified in perennial ryegrass under growth chamber or greenhouse conditions. In this study, we conducted a QTL mapping for crown rust resistance in a three-generation Italian × perennial ryegrass interspecific population under natural field conditions at two locations over 2 years. Through a comparative mapping analysis, we also investigated the syntenic relationships of previously known crown rust resistance genes in other ryegrass germplasms and oat, and genetic linkage between crown rust resistance QTL and three lignin genes: LpOMT1, LpCAD2, and LpCCR1. The interspecific mapping population of 156 progeny was developed from a cross between two Italian × perennial ryegrass hybrids, MFA and MFB. Because highly susceptible reactions to crown rust were observed from all perennial ryegrass clones, including two grandparental clones and eight clones from different pedigrees tested in this study, two grandparent clones from Italian ryegrass cv. Floregon appeared to be a source of the resistance. Two QTL on linkage groups (LGs) 2 and 7 in the resistant parent MFA map were detected consistently regardless of year and location. The others, specific to year and location, were located on LGs 3 and 6 in the susceptible parent MFB map. The QTL on LG2 was likely to correspond to those previously reported in three unrelated perennial ryegrass mapping populations; however, the other QTL on LGs 3, 6, and 7 were not. The QTL on LG7 was closely located in the syntenic genomic region where genes Pca cluster, Pcq2, Pc38, and Prq1b resistant to crown rust (P. coronata f. sp. avenae) in oat (Avena sativa L.) were previously identified. Similarly, the QTL on LG3 was found in a syntenic region with oat genes resistant to crown rust isolates PC54 and PC59. This indicates that the ortholoci for resistance genes to different formae speciales of crown rust might be present between two distantly related grass species, ryegrass and oat. In addition, we mapped four restriction fragment length polymorphism loci for three key ryegrass lignin genes encoding caffeic acid-O-methyltransferase, cinnamyl alcohol dehydrogenase, and cinnamoyl CoA-reductase on LG7. These loci were within a range of 8 to 17 centimorgans from the QTL on LG7, suggesting no tight linkage between them. The putative ortholoci for those lignin biosynthesis genes were identified on segments of rice (Oryza sativa L.) chromosomes 6 and 8, which are the counterparts of ryegrass LG7. Results from the current study facilitate understanding of crown rust resistance and its relationship with lignin biosynthesis, and also will benefit ryegrass breeders for improving crown rust resistance through marker-assisted selection.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3