Flumorph Is a Novel Fungicide That Disrupts Microfilament Organization in Phytophthora melonis

Author:

Sheng Zhu Shu,Li Liu Xi,Fei Liu Peng,Li Yong,Qiang Li Jian,Min Wang Hui,Kui Yuan Shan,Guo Si Nai

Abstract

The mechanism of the effects of flumorph (a novel fungicide) was investigated by analyzing alterations of hyphal morphology, cell wall deposition patterns, F-actin organization, and other organelles in Phytophthora melonis. Calcofluor white staining suggested that flumorph did not inhibit the synthesis of cell wall materials, but disturbed the polar deposition of newly synthesized cell wall materials during cystospore germination and hyphal growth. After exposure to flumorph, zoospores were able to switch into cystospores accompanied with the formation of a cell wall, whereas cystospores failed to induce the isotropic-polar switch and did not produce germ tubes but continued the isotropic growth phase. In flumorph-treated hyphae, the most characteristic change was the development of periodic swelling (“beaded” morphology) and the disruption of tip growth. Newly synthesized cell wall materials were deposited uniformly throughout the diffuse expanded region of hyphae, in contrast to their normal polarized patterns of deposition. These alterations were the result of F-actin disruption, identified with the fluorescein isothiocynate (FITC)-phalloidin staining. The disruption of F-actin also was accompanied by disorganized organelles: each swelling of subapical hyphae was associated with a nucleus. Vesicles did not undergo polarized secretion to the apical hyphae, but diffused around nuclei for the subapical growth; thus, the cell wall was thickened with periodic expansion along the hyphae. Upon removing flumorph, normal tip growth and organized F-actin were observed again. These data, as well as data published earlier, suggest that flumorph may be involved in the impairment of cell polar growth through directly or indirectly disrupting the organization of F-actin. The primary site of action by flumorph in the disruption of the F-actin organization is under investigation.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3