Management of Xanthomonas Leaf Blight of Onion with Bacteriophages and a Plant Activator

Author:

Lang Jillian M.1,Gent David H.2,Schwartz Howard F.1

Affiliation:

1. Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins 80523-1177

2. U.S. Department of Agriculture-Agricultural Research Service, National Forage Seed Production Research Center, Department of Botany and Plant Pathology, Oregon State University, Corvallis 97331-8539

Abstract

Xanthomonas leaf blight of onion (Allium cepa), caused by Xanthomonas axonopodis pv. allii, continues to be a challenging and yield-threatening disease in Colorado and other regions of onion production worldwide. Studies were conducted to develop management strategies for this disease that are equally effective and more sustainable than the current practices of making multiple applications of copper bactericides. Mixtures of bacteriophages and the plant defense activator, acibenzolar-S-methyl, were evaluated under field and greenhouse conditions for their abilities to reduce Xanthomonas leaf blight severity. Bacteriophage populations in the phyllosphere of onion were monitored over time. Bacteriophage populations persisted on onion leaves for at least 72 to 96 h under field and greenhouse conditions, respectively. Under field conditions at one location, biweekly or weekly applications of bacteriophages reduced disease severity by 26 to 50%, which was equal to or better than weekly applications of copper hydroxide plus mancozeb. Acibenzolar-S-methyl also successfully reduced disease severity by up to 50% when used alone preventatively or followed by biweekly bacteriophage applications. Reductions in disease severity generally were not associated with improvements in onion bulb size or yield. Integration of bacteriophage mixtures with acibenzolar-S-methyl appears to be a promising strategy for managing Xanthomonas leaf blight of onion, and could reduce grower reliance on conventional copper bactericide applied with ethylenebisdithiocarbamate fungicides.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3