First Report of Colletotrichum chrysophilum Causing Apple Bitter Rot in Spain

Author:

Cabrefiga Jordi1,Pizà Daniel2,Vilardell Pere1,Luque Jordi1

Affiliation:

1. IRTA, 16561, Sustainable Plant Protection, Cabrils, Catalunya, Spain;

2. Universitat Politècnica de Catalunya, 16767, Agri-Food Engineering and Biotechnology, Barcelona, Catalunya, Spain;

Abstract

Bitter rot of apple (Malus × domestica Borkh.) is a cosmopolitan disease affecting fruit and causes considerable losses worldwide. In September 2020, symptoms of bitter rot were observed on ‘Pink Lady’ apples in two orchards (~2.5 ha each) in Gualta, Catalonia, Spain (42.03803 N, 3.09831 E, and 42.03942 N, 3.10931 E). Early symptoms consisted of light brown and sunken circular lesions (1-4 mm) that enlarged over time, later becoming dark brown and water soaked, and extending cone-shaped toward the core. Sporulation was mostly noticed in larger lesions. Estimated incidence was 2% and 20% of 150 trees surveyed in each orchard, respectively. Twenty-one fungal isolates were obtained from diseased fruit by culturing small pieces of necrotic tissue on potato dextrose agar (PDA) amended with rifampicin at 50 mg/liter. Colonies on PDA looked identical. They were cottony, initially light-gray colored on top and darkening with age; colony reverse initially cream colored and darkening with age. Conidia were produced in orange acervular masses on Spezieller Nährstoffarmer Agar, and were aseptate, hyaline, cylindrical with obtuse ends, and measuring 10.1 to 14.7 × 4.5 to 7.1 μm (average 13.1 ± 1.04 × 5.3 ± 0.67 μm [mean ± SD], n = 50), with a mean length/width ratio 2.6 ± 0.39 (n = 16 isolates). Perithecia were not observed. Based on the conidial morphology, the isolates were tentatively identified as belonging to the Colletotrichum gloeosporioides species complex (Weir et al. 2012). Total genomic DNA was extracted from all isolates and six nuclear regions were amplified and partially sequenced: the internal transcribed spacer region of rDNA (ITS), the mating type protein 1-2-1 gene and the Mat1-2-1-Apn2 intergenic spacer region (ApMAT), actin (ACT), calmodulin (CAL), glyceraldehyde 3-P dehydrogenase (GAPDH), and tubulin (TUB2). The sequences for each region were 100% identical across all isolates. BLAST searches in GenBank showed 99-100% identity with sequences of various C. chrysophilum W.A.S. Vieira, W.G. Lima, M.P.S. Câmara & V.P. Doyle strains including the ex-type CMM4268 (Vieira et al. 2017). Sequences of the representative isolate CJL1080 were deposited in GenBank (ACT, MZ488944; ApMAT, MZ442299; CAL, MZ488945; GAPDH, MZ488946; ITS, MZ443972; TUB2, MZ442300). A multilocus phylogenetic analysis through Bayesian inference conducted with the obtained sequences and reference ones (Khodadadi et al. 2020) revealed that our isolates clustered well within C. chrysophilum, as suggested by BLAST results. To confirm Koch’s postulates, isolates CJL1080 and CJL1095 were inoculated on ‘Pink Lady’ apples. Six surface-sterilized fruits per isolate were wound-inoculated four times each with either 20 μl of a conidial suspension (105 conidia/ml) or sterile distilled water (control). After 7 days of incubation in a moist chamber at 22°C, symptoms compatible with Colletotrichum infection were observed around the wounds, whereas control inoculations remained symptomless. The fungus was reisolated from all the lesions and identified through its morphological traits and DNA sequencing (ApMat, CAL, and GAPDH). No fungus was isolated from the controls. Taxa of the C. gloeosporioides species complex causing bitter rot have been recently reported in Europe (Grammen et al. 2019; Nodet et al. 2019). This is the first report of C. chrysophilum causing apple bitter rot in Spain, which expands the knowledge on the geographic distribution of this important pathogen of apple in Europe.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3