Sensitivity of Rhizoctonia solani to Succinate Dehydrogenase Inhibitor and Demethylation Inhibitor Fungicides

Author:

Ajayi-Oyetunde Olutoyosi O.1,Butts-Wilmsmeyer Carolyn J.1,Bradley Carl A.1

Affiliation:

1. Department of Crop Sciences, University of Illinois, Urbana 61801

Abstract

Soybean seedling diseases are caused by Rhizoctonia solani and can be managed with seed-applied fungicides that belong to different chemistry classes. To provide a benchmark for assessing a decline in sensitivities to these fungicide classes, R. solani isolates collected prior to 2001 were evaluated for their sensitivities to succinate dehydrogenase inhibitor (SDHI) (penflufen and sedaxane) and demethylation inhibitor (DMI) fungicides (ipconazole and prothioconazole). The effective concentration of each fungicide that reduced mycelial growth by 50% (EC50) was determined in vitro and compared with those of isolates recovered after 2011 from soybean plants with damping off and hypocotyl and root rot symptoms across different soybean-growing regions in the United States and Canada. All isolates, regardless of collection date, were extremely sensitive (EC50 < 1 μg/ml) to the SDHI fungicides but were either extremely sensitive or moderately sensitive (1 ≤ EC50 ≤ 10 μg/ml) to the DMI fungicides. For all four active ingredients, variation in sensitivities was observed within and among the different anastomosis groups composing both isolate groups. Isolates collected after 2011, which also had varying in vitro sensitivities, were further evaluated for in vivo sensitivity to the four fungicides in the greenhouse. In vitro fungicide sensitivity did not always coincide with fungicide efficacy in vivo because all isolates tested, regardless of in vitro sensitivity, were effectively controlled by the application of the seed treatment fungicides in the greenhouse. Overall, our results indicate no shift in sensitivity to the fungicide classes evaluated, although considerable variability in the sensitivities of the two groups of isolates examined was present. Based on this research, continued monitoring of fungicide sensitivities of R. solani populations should occur to determine whether sensitivities become further reduced in the future.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3