First Report of Brown Spot Disease Caused by Neoscytalidium dimidiatum on Hylocereus undatus in Guangdong, Chinese Mainland

Author:

Lan G.-B.1,He Z.-F.1,Xi P.-G.2,Jiang Z.-D.2

Affiliation:

1. Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China

2. Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China. This study was funded by the Sino-ASEAN Network for Early Warning Prevention and Management of Major Invasive Alien Pests, 2011DFB30040

Abstract

Pitahaya or dragon fruit [Hylocereus undatus (Haw.) Britton & Rose] is one of the most popular tropical fruits in the world. In China, it is widely planted in Guangdong, Guangxi, Hainan, and Taiwan. In July 2011, a new pitahaya disease was found in Conghua City and Yunfu City, Guangdong Province, China, characterized by many small, circular, reddish brown spots over the diseased stems. The spots continuously expanded, and ultimately formed large areas of canker on stems. It is similar to pitahaya stem canker disease caused by Neoscytalidium dimidiatum in Taiwan (1). Pieces of tissues were collected from the lesion margins. After surface disinfestations with 1% sodium hypochloride for 1 min and rinsing in sterile water three times, the diseased tissues were placed on potato dextrose agar medium plates (PDA) and incubated at 28°C for 3 days. A dark, fast-growing fungus was isolated from all samples. For identification, single-spore cultures were grown on PDA in an incubator at 28°C. After 5 days, colonies with dark gray to black aerial mycelium formed. The colonies produced abundant conidia that occurred in arthric chains in aerial mycelium. The conidia were disarticulating, cylindrical-truncate, oblong-obtuse to doliform, dark brown, zero- to one-septate, and averaged 7.56 (5.46 to 10.30) × 6.20 (3.79 to 8.93) μm. The teleomorph was never observed in PDA culture. Based on these characteristics, the fungus was identified as N. dimidiatum (Penz.) Crous & Slippers (2). The internal transcribed spacer (ITS) regions of rDNAs from two isolates were amplified by primers ITS1 and ITS4 (3), and then sequenced. Both sequences were completely identical and 579 bp long (GenBank Accession Nos. JX128103 and JX128104), with 99% identity to that of N. dimidiatum previously deposited (Accession No. HQ439174). To confirm its pathogenicity, six healthy detached stems of pitahaya designed as two replicates were inoculated by injecting 10 μl of conidia suspension (1 × 106 conidia per ml). Three stems were inoculated with sterile water as controls. The inoculated stems were kept in an incubator at 28°C in dark. The stems exhibited the same symptoms as described above after 10 days post inoculation, whereas no symptoms developed on the control stems. The fungus was reisolated from the lesions of the inoculated stem. These results indicated that N. dimidiatum was the pathogen of pitahaya brown spot disease. To our knowledge, this is the first report of brown spot caused by N. dimidiatum on H. undatus on the Chinese mainland. References: (1) M. F. Chuang et al. Plant Dis. 96:906, 2012. (2) P. W. Crous et al. Stud. Mycol. 55:235, 2006. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, New York, 1990.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3