First Report of Damping-Off on Strawberry Tree Caused by Colletotrichum acutatum and C. simmondsii in Italy

Author:

Polizzi G.1,Aiello D.1,Guarnaccia V.1,Vitale A.1,Perrone G.2,Stea G.2

Affiliation:

1. Dipartimento di Gestione dei Sistemi Agroalimentari e Ambientali, sezione Patologia Vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy

2. Istituto di Scienze delle Produzioni Alimentari (ISPA), Via Amendola 122/O, 70126 Bari, Italy

Abstract

In June 2010, a widespread damping-off was noticed in a commercial nursery in eastern Sicily on ~20,000 potted 2-month-old strawberry tree (Arbutus unedo L.) seedlings. More than 40% of the seedlings showed disease symptoms including brown lesions at the seedling crown above and below the soil line that expanded rapidly to girdle the stem. Stem lesions were followed by death of the entire seedling in a few days. Diseased stem and crown tissues of 20 seedlings were surface disinfested for 2 min in 1% NaOCl, rinsed in sterile water, plated on potato dextrose agar amended with 100 mg/liter of streptomycin sulfate, and incubated at 25°C in the dark. Fungal isolates with mycelial and morphological characteristics of Colletotrichum spp. were isolated from all seedlings. Fungal colonies were pale orange or gray without carmine pigments. On carnation leaf agar (CLA), single-spore isolates produced many orange masses of hyaline, aseptate conidia with a cylindrical to ellipsoidal shape, rounded apex, and 11 to 15 μm long and 3 to 4.5 μm wide (average 13.2 × 3.7 μm). The pointed conidia of 10 isolates were morphologically similar. DNA isolation was performed with the Wizard Magnetic DNA Purification Kit (Promega, Madison, WI) following the manufacturer's instructions with some modifications. A PCR assay was conducted on two representative isolates (ITEM 13492 and ITEM 13493) by analyzing sequences of gene benA (coding β-tubulin protein) using the primers T1 and T10 reported by O'Donnell and Cigelnik (1). BenA gene sequence of ITEM 13492 exhibited an identity of 99.8% to C. simmondsii strain BRIP 4704 (GenBank No. GU183277), while BenA gene sequence of ITEM 13493 exhibited an identity of 100% to C. acutatum strain BRIP52695 (GenBank No. GU183314). The identification of these two species was made by comparing the internal transcribed spacer region and BenA sequences of these two strains with that deposited by Shivas and Tan (2). Morphological characteristics, as well as the PCR assay, identified the isolates as Colletotrichum acutatum J.H. Simmonds and C. simmondsii R.G. Shivas & Y. P. Tan (2,3). Pathogenicity tests were carried out on 2-month-old seedlings of strawberry tree grown on alveolar trays. Conidial suspensions of two isolates (ITEM 13492 and ITEM 13493) were obtained from 14-day-old single-spore colonies on CLA, then adjusted to 105 conidia per ml and sprayed on seedlings. Fifty seedlings for each isolate were used. The same number of seedlings was mock inoculated with sterile distilled water. All seedlings were enclosed for 4 days in plastic bags and placed in a growth chamber at 24 ± 1°C for 45 days. Identical symptoms to those observed in the nurseries appeared 30 days after inoculation, and after 45 days, 80% of the plants were dead. No difference in virulence between the two isolates was observed and no symptoms were detected on the control plants. C. acutatum and C. simmondsii were successfully reisolated from all symptomatic tissues and identified as previously described, completing Koch's postulates. To our knowledge, this is the first report in the world of C. acutatum and C. simmondsii on strawberry tree. This suggests that Colletotrichum spp. may be important pathogens of young seedlings of strawberry tree in nurseries. References: (1) K. O'Donnell and E. Cigelnik. Mol. Phylo. Evol. 7:103, 1997. (2) R. G. Shivas and Y. P. Tan. Fungal Divers. 39:111, 2009. (3) B. C. Sutton. Page 523 in: The Coelomycetes. Commonwealth Mycological Institute, Kew, Surrey, England, 1980.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3