First Report of Fusarium verticillioides causing Stem Blight of Schizonepeta tenuifolia in China

Author:

Li Pengpeng1,Zhou Zhiling2,Wang Yueyue2,Tian Yinshuai2,Wei Xuejun2

Affiliation:

1. School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China;

2. Handan, China;

Abstract

Schizonepeta tenuifolia is an important medicinal plant in China. Over 10000 ha of S. tenuifolia is cultivated in the country annually. However, fungal diseases are a major limiting factor in S. tenuifolia production. In 2022, 50 ha in several S. tenuifolia fields in Hebei province were observed to be severely affected by a disease causing a yield loss of 30%. Results from field surveys suggested an epidemic during seedlings stages that affected S. tenuifolia stems, causing irregularly watery brown lesions. Lesions ranged from 1.5 to 2 × 2.5 to 3 cm. To isolate the causal agent, tissue was removed from the border of lesions and surface sterilized in 75% ethanol for 30 sec and 0.1% HgCl2 for 1 min, then rinsed three times with steriled distilled water(SDW), plated on potato dextrose agar(PDA) at 25℃, and incubated in the dark for 7 days. Five putative isolates of the genus Fusarium were hyphal-tipped on new PDA plates. Isolates were cultured on synthetic low-nutrient agar(SNA) with a ~ 1 × 2-cm strip of sterile filter paper on the agar surface(Nirenberg 1976). Cultures were incubated for 7 to 10 days at 20℃ in dark conditions. When sporulation was observed, agar blocks were mounted on a microscopic slide with a drop of lactophenol cotton blue and examined at 400×. Colonies grew rapidly with abundant pink to violet aerial hyphae. Sporodochia formed on the agar, and the aerial conidiophores branched sparsely, often alternately or oppositely, terminating with up to three verticillate phialides. Microconidia produced on polyphialides and aggregating in heads were unicellular, ovoidal or ellipsoidal, 4.4 to 17 × 1.5 to 4.5 μm. Macroconidia were abundant, falcate to straight, three to five septate, with a distinct foot cell, 27 to 73 × 3.1 to 5.6 μm. Based on morphological characteristics, isolates were tentatively identified as F. verticillioides(A1-Hatmi et al. 2016; Guarro 2013). Pathogenicity tests were performed by injection inoculation of 0.1 mL of conidial suspensions(1×106 conidia/mL) into three S. tenuifolia stems using a disposable needle and syringe. Distilled water was injected into three mock controls. Inoculated plants were placed in a greenhouse at 32 to 34℃ and 95% relative humidity. Typical lesions were observed 7 days after inoculation, except in the control samples. Each treatment was replicated three times. The suspected pathogen was consistently reisolated from diseased tissue according to Koch’s postulates, and was found to be morphologically similar to F. verticillioides. Preliminary morphological identification of the pathogen was further confirmed by using genomic DNA extracted from the mycelia of a 7-day-old culture grown on PDA at 25℃. The translation elongation factor 1-α gene(TEF1) was amplified(O'Donnell et al. 1998) and the TEF region(Genbank Accession No. OR105502) was sequenced by Sangon Biotech Co., Ltd.(Shanghai, China) and displayed 100% nucleotide similarity with rDNA-TEF of F. verticillioides(JF740717) separately after a BLASTn search in Genbank. Based on the symptoms, fungal morphology, TEF sequence, and pathogenicity testing, this fungus was identified as F. verticillioides. to our knowledge, this is the first report of F. verticillioides infecting S. tenuifolia in China. This report will promote further research of F. verticillioides on this host and lead to better understanding of disease prevalence, extent of damage, and possible management options.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3