Affiliation:
1. School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Crawley, W.A. 6009 Australia
Abstract
Black spot disease on field pea (Pisum sativum) in Australia is generally caused by one or more of the four fungi: Mycosphaerella pinodes (anamorph Ascochyta pinodes), Phoma medicaginis var. pinodella (synonym Phoma pinodella), Ascochyta pisi, and Phoma koolunga (1,2,4). However, in 2010 from a field pea blackspot disease screening nursery at Medina, Western Australia, approximately 25% of isolates were a Phoma sp. that was morphologically different to Phoma spp. previously reported on field pea in Western Australia, while the remaining 75% of isolates were either M. pinodes or P. medicaginis var. pinodella. Single-spore isolations of 23 isolates of this Phoma sp. were made onto potato dextrose agar. A PCR-based assay with the TW81 and AB28 primers was used to amplify from the 3′ end of 16S rDNA, across ITS1, 5.8S rDNA, and ITS2 to the 5′ end of the 28S rDNA. The DNA products were sequenced and BLAST analyses were used to compare sequences with those in GenBank. In each case, the sequence had ≥99% nucleotide identity with the corresponding sequence in GenBank for P. herbarum. Isolates also showed morphological similarities to P. herbarum as described in other reports (e.g., 3). The relevant information for a representative isolate has been lodged in GenBank (Accession No. JN247437). The same primers were used by Davidson et al. (2) to identify P. koolunga, but none of our 23 isolates were P. koolunga. A conidial suspension of 107 conidia ml–1 from a single-spore culture was spray inoculated onto foliage of 10-day-old Pisum sativum cv. Dundale plants maintained under >90% relative humidity conditions for 72 h postinoculation. Symptoms evident by 11 days postinoculation consisted of pale brown lesions that were mostly 1.5 to 2 mm long and 1 to 1.5 mm wide. Approximately 50% of lesions showed a distinct chlorotic halo extending 1 to 2 mm outside the boundary of the lesion. P. herbarum was readily reisolated from infected foliage. A culture of this representative isolate has been lodged in the Western Australian Culture Collection Herbarium maintained at the Department of Agriculture and Food Western Australia (Accession No. WAC13499). Outside of Australia, P. herbarum, while generally considered a soilborne opportunistic pathogen, has been reported on a wide range of species, including field pea (3). Molecular analysis of historical isolates collected from field pea in Western Australia, mostly in the late 1980s, did not show any incidence of P. herbarum, despite this fungus being reported on alfalfa (Medicago sativa) and soybean (Glycine max) in Western Australia in 1985 (Australian Plant Pest Database). In Western Australia, this fungus has also been recorded on a Protea sp. in 1991 and on Arabian pea (Bituminaria bituminosa) in 2010 (Australian Plant Pest Database). To our knowledge, this is the first report of P. herbarum as a pathogen on field pea in Australia. These previous reports of P. herbarum on other hosts in Western Australia and the wide host range of P. herbarum together suggest the potential for this fungus to be a pathogen on a wider range of genera/species than field pea. References: (1) T. W. Bretag and M. Ramsey. Page 24 in: Compendium of Pea Diseases and Pests. 2nd ed. The American Phytopathologic Society, St Paul, MN, 2001. (2) J. A. Davidson et al. Mycologica 101:120, 2009. (3) G. L. Kinsey. Phoma herbarum. No 1501. IMI Descriptions of Fungi and Bacteria, 2002. (4) T. L. Peever et al. Mycologia 99:59, 2007.
Subject
Plant Science,Agronomy and Crop Science