Characterization of the VisdhC and VisdhD Genes in Venturia inaequalis, and Sensitivity to Fluxapyroxad, Pydiflumetofen, Inpyrfluxam, and Benzovindiflupyr

Author:

Ayer Katrin M.1,Villani Sara M.2,Choi Mei-Wah1,Cox Kerik D.1ORCID

Affiliation:

1. Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456; and

2. Department of Entomology and Plant Pathology, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759

Abstract

Succinate dehydrogenase inhibitors (SDHI) are an important class of fungicides for management of apple scab, especially as resistance to other classes of fungicides has become prevalent in the northeastern United States. Considering their single-site mode of action, there is high risk of resistance development to SDHI fungicides. Such risk mandates the need for proper monitoring of shifts in population sensitivity. This study aims to provide a means for phenotypic and genotypic characterization of SDHI fungicide resistance for Venturia inaequalis, the causal agent of apple scab. To complement the published sequence of VisdhB, target genes VisdhC and VisdhD were identified using sequences of homologous genes in other fungal organisms and a draft genome of V. inaequalis. Using mycelial growth and conidial germination assays, baseline sensitivities and cross sensitivities of V. inaequalis were determined for several SDHI fungicides. Mean baseline EC50 values for conidial germination of benzovindiflupyr, fluxapyroxad, pydiflumetofen, and inpyrfluxam were found to be 0.0021, 0.0284, 0.014, and 0.0137 μg ml−1, respectively. Mean baseline EC50 values for mycelial growth of benzovindiflupyr, fluxapyroxad, pydiflumetofen, and inpyrfluxam were found to be 0.0575, 0.228, 0.062, and 0.0291 μg ml−1, respectively. A significant and positive correlation in sensitivity was found between benzovindiflupyr, fluxapyroxad, pydiflumetofen, and inpyrfluxam as well as penthiopyrad and fluopyram, with the highest correlation between benzovindiflupyr and penthiopyrad for mycelial inhibition of V. inaequalis (r = 0.950, P < 0.001). For inhibition of conidial germination, the highest correlation was observed between penthiopyrad and fluopyram (r = 0.775, P < 0.001). Furthermore, the sequences of the VisdhC and VisdhD genes were identified and characterized for baseline isolates of V. inaequalis. Residues of similar position to mutations found in other systems that confer resistance to SDHI fungicides were identified in baseline isolates, but no mutations were identified in baseline isolates or those previously exposed to SDHI fungicides. This study will serve as a reference for future monitoring of resistance to SDHI fungicides in V. inaequalis at both a phenotypic and genotypic level.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3