Modeling the Effect of Temperature and Wetness on Guignardia Pseudothecium Maturation and Ascospore Release in Citrus Orchards

Author:

Fourie Paul,Schutte Tian,Serfontein Suzel,Swart Fanus

Abstract

Ascospores are the most important inoculum source of citrus black spot (CBS), caused by Guignardia citricarpa, but pseudothecium maturation and ascospore release are inadequately studied. Guignardia ascospore trapping and concomitant weather data were obtained for three localities over three seasons (July to March 2006 to 2009) in the Limpopo province of South Africa. Degree-days accumulated until first seasonal ascospore discharge (>10°C with 1 July as biofix) (DDtemp), and DDtemp accumulated on rainy (rainfall >0.1 mm) (DDrain) and moist days (vapor pressure deficit <5 hPa) (DDvpd) were used in two Gompertz models to predict onset of ascospore release: a temperature model [Event = exp(–exp(–(–2.725 + 0.004 × DDtemp)))] and a temperature/moisture model [Event = exp(–exp(– (–3.238 + 0.008 × DDvpd + 0.004 × DDtemp – 0.009 × DDrain)))] (R2 = 0.608 and 0.658, respectively). Both models predicted a delay in pseudothecium maturation in climates with colder winters and springs. A Gompertz equation was also used to predict the proportion of Guignardia ascospores trapped (PAT) per season from DDtemp data accumulated on wet or moist days (DDwet2) from the first seasonal ascospore discharge [PAT = exp(–4.096 × exp(–0.005 × DDwet2); R2 = 0.908]. The PAT model predicted lag phases and 7-day peaks in ascospore release patterns with reasonable accuracy. These models can be used to predict the onset and dynamics of ascospore release in climatically diverse regions.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3