Exserohilum turcicum Race Population Distribution in the North Central United States

Author:

Weems Japheth D.1,Bradley Carl A.1

Affiliation:

1. Department of Crop Sciences, University of Illinois, Urbana, 61801

Abstract

Northern leaf blight (NLB) of corn, caused by Exserohilum turcicum, is a foliar disease common across corn production regions of the world, including those in the north central United States. Previous race population distribution studies identified five physiological races present in the United States, prior to 1995. For this study, 156 E. turcicum isolates were screened on corn differential lines containing Ht1, Ht2, Ht3, Htm1, and Htn1 resistance genes. Isolates were collected from fields in Iowa, Illinois, Indiana, Minnesota, North Carolina, Ohio, and Wisconsin, which included 143 isolates collected between 2007 and 2014 and 13 isolates collected between 1979 and 1985. Twenty different physiological races were observed based on the symptom response of the differential corn lines. E. turcicum race 0, 1, and 1mn were the most prevalent races, comprising 21, 27, and 13% of the 156 isolates, respectively. Race populations were diverse within states and years. Virulence to multiple Ht resistance genes within individual isolates was observed in 47% of those tested, with 3% of the isolates conferring virulence to all Ht resistance genes. Virulence to the Ht1, Ht2, Ht3, Htm1, and Htn1 resistance genes was present in 64, 20, 18, 32, and 27% of the E. turcicum isolates, respectively. Virulence to Ht resistance genes was fairly evenly distributed across states, in isolates collected after 2008. Virulence to Ht2, Ht3, Htm1, and Htn1 decreased after 2010. Variations in race population diversity are difficult to explain without knowing the level of selection pressure present in fields, and information regarding Ht resistance gene deployment in commercial varieties is not publicly available. Although virulence was observed against all Ht resistance genes, qualitative Ht resistance genes could be used in conjunction with quantitative resistance to increase NLB control.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3