Integrating Spectroscopy with Potato Disease Management

Author:

Couture J. J.1ORCID,Singh A.1,Charkowski A. O.2,Groves R. L.3,Gray S. M.4,Bethke P. C.5,Townsend P. A.6

Affiliation:

1. Department of Forest and Wildlife Ecology

2. Department of Plant Pathology

3. Department of Entomology, University of Wisconsin-Madison, Madison 53706

4. Emerging Pest and Pathogen Research Unit, United States Department of Agriculture Agricultural Research Service (USDA-ARS), and Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14850

5. Vegetable Crops Research Unit, USDA-ARS, and Department of Horticulture, University of Wisconsin-Madison

6. Department of Forest and Wildlife Ecology, University of Wisconsin-Madison

Abstract

Spectral phenotyping is an efficient method for the nondestructive characterization of plant biochemical and physiological status. We examined the ability of a full range (350 to 2,500 nm) of foliar spectral data to (i) detect Potato virus Y (PVY) and physiological effects of the disease in visually asymptomatic leaves, (ii) classify different strains of PVY, and (iii) identify specific potato cultivars. Across cultivars, foliar spectral profiles of PVY-infected leaves were statistically different (F = 96.1, P ≤ 0.001) from noninfected leaves. Partial least-squares discriminate analysis (PLS-DA) accurately classified leaves as PVY infected (validation κ = 0.73) and the shortwave infrared spectral regions displayed the strongest correlations with infection status. Although spectral profiles of different PVY strains were statistically different (F = 6.4, P ≤ 0.001), PLS-DA did not classify different strains well (validation κ = 0.12). Spectroscopic retrievals revealed that PVY infection decreased photosynthetic capacity and increased leaf lignin content. Spectral profiles of potato cultivars also differed (F = 9.2, P ≤ 0.001); whereas average spectral classification was high (validation κ = 0.76), the accuracy of classification varied among cultivars. Our study expands the current knowledge base by (i) identifying disease presence before the onset of visual symptoms, (ii) providing specific biochemical and physiological responses to disease infection, and (iii) discriminating between multiple cultivars within a single plant species.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3