Evaluation of Olive as a Host of Xylella fastidiosa and Associated Sharpshooter Vectors

Author:

Krugner Rodrigo1,Sisterson Mark S.1,Chen Jianchi1,Stenger Drake C.1,Johnson Marshall W.2

Affiliation:

1. United States Department of Agriculture—Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648

2. Department of Entomology, University of California, Riverside 92521

Abstract

Olive (Olea europaea) trees exhibiting leaf scorch or branch dieback symptoms in California were surveyed for the xylem-limited, fastidious bacterium Xylella fastidiosa. Only approximately 17% of diseased trees tested positive for X. fastidiosa by polymerase chain reaction, and disease symptoms could not be attributed to X. fastidiosa infection of olive in greenhouse pathogenicity assays. Six strains of X. fastidiosa were isolated from olive in Southern California. Molecular assays identified strains recovered from olive as belonging to X. fastidiosa subsp. multiplex. Pathogenicity testing of olive strains on grapevine and almond confirmed that X. fastidiosa strains isolated from olive yield disease phenotypes on almond and grapevine typical of those expected for subsp. multiplex. Mechanical inoculation of X. fastidiosa olive strains to olive resulted in infection at low efficiency but infections remained asymptomatic and tended to be self-limiting. Vector transmission assays demonstrated that glassy-winged sharpshooter (Homalodisca vitripennis) could transmit strains of both subspp. multiplex and fastidiosa to olive at low efficiency. Insect trapping data indicated that two vectors of X. fastidiosa, glassy-winged sharpshooter and green sharpshooter (Draeculacephala minerva), were active in olive orchards. Collectively, the data indicate that X. fastidiosa did not cause olive leaf scorch or branch dieback but olive may contribute to the epidemiology of X. fastidiosa-elicited diseases in California. Olive may serve as an alternative, albeit suboptimal, host of X. fastidiosa. Olive also may be a refuge where sharpshooter vectors evade intensive areawide insecticide treatment of citrus, the primary control method used in California to limit glassy-winged sharpshooter populations and, indirectly, epidemics of Pierce's disease of grapevine.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3