Characterization of the Populations of Botrytis cinerea Infecting Plastic Tunnel-Grown Strawberry and Tomato in the Hubei Province of China

Author:

Yang Rui12ORCID,Li Na1,Zhou Ziliang1,Li Guoqing1ORCID

Affiliation:

1. State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China

2. College of Resources and Environmental Science, Henan Institute of Science and Technology, Xinxiang 453003, China

Abstract

A total of 707 isolates of Botrytis were collected from plastic tunnel-grown strawberry and tomato in the Hubei province of China. They were identified based on the specific molecular markers. Diversity of the B. cinerea (Bc) isolates was evaluated by typing the transposable elements (Boty, Flipper) and the mating types (MAT1-1, MAT1-2), as well as by determining virulence on tobacco (Nicotiana benthamiana) and fenhexamid sensitivity in agar medium. The results showed that 706 isolates (99.9%) were Bc and 1 isolate (0.1%) was B. pseudocinerea. The Bc isolates (n = 706) were classified into four transposable element types, Vacuma (3.1%), Boty (9.6%), Flipper (18.4%), and Transposa (68.8%). The strawberry and tomato subpopulations of Bc had significantly different (P < 0.05) compositions of the four transposable element types. The overall ratio of MAT1-1 to MAT1-2 deviated from 1:1 (n = 706; P = 0.0002), and MAT1-2 (56.9%) predominated over MAT1-1 (43.1%). In 7 of 12 geographic subpopulations, the ratio of MAT1-1 to MAT1-2 matched 1:1; however, in the remaining five geographic subpopulations, the ratio of MAT1-1 to MAT1-2 did not match 1:1. Results of the biological characterizations showed that most Bc isolates were highly sensitive or sensitive to fenhexamid, and the majority of Bc isolates were highly virulent or virulent on tobacco. Moreover, the relationship between genetic diversity and biological characteristics was analyzed. The results achieved during this study are helpful for understanding of the populations of B. cinerea.

Funder

National Natural Science Foundation of China

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3