A LAMP Assay for Rapid Detection of the Pitch Canker Pathogen Fusarium circinatum

Author:

Meinecke Colton D.1ORCID,Vos Lieschen De2,Yilmaz Neriman2,Steenkamp Emma T.2,Wingfield Michael J.2,Wingfield Brenda D.2,Villari Caterina1ORCID

Affiliation:

1. D. B. Warnell School of Forestry of Natural Resources, University of Georgia, Athens, GA 30602, U.S.A.

2. Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa

Abstract

The pine pitch canker pathogen Fusarium circinatum is endemic in the southeastern United States and Central America and represents an invasive threat globally. This ecologically adaptable fungus readily infects all parts of its pine hosts, leading to widespread mortality of nursery seedlings and decline in the health and productivity of forest stands. Because trees infected by F. circinatum can remain asymptomatic for long periods of time, accurate and rapid tools are needed for real-time diagnostics and surveillance at ports, in nurseries, and in plantations. To meet this need and to limit the spread and impact of the pathogen, we developed a molecular test using loop-mediated isothermal amplification (LAMP), a technology that allows for the rapid detection of pathogen DNA on portable, field-capable devices. LAMP primers were designed and validated to amplify a gene region unique to F. circinatum. Using a globally representative collection of F. circinatum isolates and other closely related species, we have demonstrated that the assay can be used to identify F. circinatum across its genetic diversity and that it is sensitive to as few as 10 cells from purified DNA extracts. The assay can also be used with a simple, pipette-free DNA extraction method and is compatible with testing symptomatic pine tissues in the field. This assay has the potential to facilitate diagnostic and surveillance efforts both in the laboratory and in the field and, thus, to reduce the spread and impact of pitch canker worldwide.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3