First Report of Cirsium arvense (Canada thistle) as a New Host of Orobanche cumana Wallr. in Xinjiang, China

Author:

Cao Xiaolei12,Zhao Sifeng34,Yao Zhaoqun5,Dong Xue6,Zhang Lu7,Zhao Qiuyue7

Affiliation:

1. Shihezi University, 70586, Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, Xinjiang, China

2. Shihezi University, 70586, Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Agriculture College of Shihezi University , Shihezi, Xinjiang, China;

3. Shihezi University, Key Laboratory at the Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization , Agriculture College of Shihezi University, Shihezi, 832003, China. , ShiHeZi, Xinjiang, China

4. Shihezi, China;

5. Shihezi University College of Agriculture, 117455, Plant protection, North Fourth Road, Shihezi, China, 832003;

6. Shihezi University College of Agriculture, 117455, Plant protection, Shihezi, China;

7. Shihezi University, Key Laboratory at the Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization , Agriculture College of Shihezi University, Shihezi, 832003, China., ShiHeZi, Xinjiang, China;

Abstract

Cirsium arvense (Canada thistle) is a perennial herb native to Eurasia that has been introduced to temperate regions of the world where it is considered one of the serious weeds for arable and pastoral agriculture (Schröder et al. 1993). C. arvense reproduces both clonally and sexually. The weed is highly competitive, causes yield reductions in crops such as wheat, alfalfa, sugarbeet, and can reduce forage availability and production (Wilson 1981). Canada thistle is also a harbour for plant pathogens such as plant-parasitic nematodes (Tenuta et al. 2014). Sunflower broomrape (Orobanche cumana Wallr.) is a holoparasitic plant species with a restricted range of hosts both in the wild, where it mainly parasitizes a few species of the Asteraceae, and in agricultural fields, where it is exclusively found growing on sunflower (Fernández-Martínez et al. 2015). O. cumana infection can cause up to 80% of the yield loss in sunflower, which is a serious threat for sunflower production in Xinjiang and Inner Mongolia, China (Parker 2009). In July 2019, broomrape was observed parasitizing C. arvense in the greenhouse used for sunflower resistance identification (Shihezi, 86° 3' 36" E, 44° 18' 36" N, 500 m elevation) in Xinjiang, China. Fifty percent of the plants were parasitized by broomrape in the greenhouse and the host had an average of 1-2 broomrape shoots per plant. For molecular analysis, total genomic DNA was extracted from the flowers of broomrape and the rps2, rbcL, trnL-F genes, and ribosomal DNA internal transcribed spacer (ITS) region were amplified by PCR using the primer pairs rps2F/rps2R, rbcLF/rbcLR, C/F, ITS1/ITS4, respectively (Park et al. 2007; Manen et al. 2004; Taberlet et al. 1991; Anderson et al. 2004). The ITS (659bp), rps2 (451 bp), trnL-F (914 bp), and rbcL (961 bp) gene sequences of the broomrape were deposited in GenBank, the accession numbers are MT856745, MW809407, MW809408, and MW809409. The results of BLAST analysis showed that ITS sequence shared 100% similarity with O. cumana (659/659 nucleotide identity, MK567978), the rps2 sequence shared 99% similarity with O. cumana (449/451 nucleotide identity, KT387722), trnL-F sequence shared 99% similarity with O. cumana (907/911 nucleotide identity, MT027325), rbcL sequence shared 99% similarity with O. cumana (956/964 nucleotide identity, MK577840). The morphological characteristics such as stem, inflorescence, corolla, bracts, calyx, stamens, gynoecium are consistent with O. cumana described by Pujadas-Salvá and Velasco (2000). Morphological and molecular identification strongly support that the broomrape parasitic on C. arvense belonged to the O. cumana. Greenhouse pot experiments were carried out to assess the parasitic relationship between sunflower broomrape and C. arvense (Fernández-Martínez et al. 2000). In January 2020, C. arvense roots were harvested from an extant field of C. arvense in the greenhouse at Shihezi University (Supplementary Figure S1A). The soil was dug to 30-40 cm depth and C. arvense roots were removed and carefully washed in water. The healthy and living C. arvense roots were selected and cut into 10-11 cm pieces. Four C. arvense root pieces were grown (buried at a depth of 10-12 cm) in 8-L pots containing a mixture of sand-vermiculite-compost (1:1:1 v:v:v) and O. cumana seeds (50 mg of O. cumana seeds per 1 kg of the substrate) with 5 replicates. Three non-infected plants were grown and evaluated in parallel. Approximately 80 days after planting, at the flowering stage of the O. cumana, C. arvense plants were uprooted from the soil. Compared to non-infected plants, the hosts’ symptoms were slow growth, leaf wilting, and chlorosis, and similiar to the broomrape-infected C. arvense plants observed in the greenhouse field. The roots of C. arvense and broomrape were carefully washed in water and observed the parasitism of O. cumana. The infection was confirmed by observation of the attachment of the O. cumana to the C. arvense roots (Supplementary Figure S1D). To the best of our knowledge, this is the first report of O. cumana parasitizing C. arvense in Xinjiang, China. C. arvense as a new host of O. cumana indicates that sunflower broomrape can also propagate and survive in a host such as Canada thistle grown in sunflower fields. This finding suggests that it may be more difficult to control sunflower broomrape by rotation. In the next study, the contaminated area and the degree of parasitism of broomrape on C. arvense in the field will be investigated, and better-integrated control methods for controlling O. cumana will be designed. References: Schröder, D., et al. 1993. Weed. Res. 33:449-458. https://doi.org/10.1111/j.1365-3180.1993.tb01961.x Crossref, ISI, Google Scholar Wilson, R. G. 1981. Weed. Sci. 29:159-164. https://doi.org/10.1017/S0043174500061725 Crossref, ISI, Google Scholar Tenuta, M., et al. 2014. J. Nematol. 46(4):376–384. Fernández-Martínez, J. M., et al. 2015. Page 129 in: Sunflower Oilseed: Chemistry, Production, Processing and Utilization. AOCS Press, Champaign, IL. https://doi.org/10.1016/B978-1-893997-94-3.50011-8 Crossref, Google Scholar Parker, C. 2009. Pest Manag. Sci. 65:453-459. https://doi.org/10.1002/ps.1713 Crossref, ISI, Google Scholar Park, J. M., et al. 2007. Mol. Phylogenet. Evol. 43: 974. https://doi.org/10.1016/j.ympev.2006.10.011 Crossref, ISI, Google Scholar Manen, J. F., et al. 2004. Mol. Phylogenet. Evol. 33:482. https://doi.org/10.1016/j.ympev.2004.06.010 Crossref, ISI, Google Scholar Taberlet, P., et al. 1991. Plant Mol. Biol. 17:1105-1109. https://doi.org/10.1007/bf00037152 Crossref, ISI, Google Scholar Anderson, I.C., et al. 2004. Environ. Microbiol. 6: 769. https://doi.org/10.1111/j.1462-2920.2004.00675.x Crossref, ISI, Google Scholar Pujadas-Salvà, A. J., and Velasco, L. 2000. Bot. J. Linn. Soc. 134:513-527. https://doi.org/10.1006/bojl.2000.0346 Crossref, ISI, Google Scholar Fernández-Martínez, J. M., et al. 2000. Crop. Sci. 40:550-555.   https://doi.org/10.2135/cropsci2000.402550x Crossref, ISI, Google Scholar

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3